预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共24页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年内蒙古赤峰市翁牛特旗乌丹第二中学高二数学期末经典模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知等比数列的前n项和为,且满足公比0<q<1,<0,则下列说法不正确的是()A.一定单调递减B.一定单调递增C.式子-≥0恒成立D.可能满足=,且k≠12、在的展开式中,的系数为()A.B.5C.D.103、已知实数a,b,c,若a>b,则下列不等式成立的是()AB.C.D.4、已知圆和圆恰有三条公共切线,则的最小值为()A.6B.36C.10D.5、定义在区间上的函数的导函数的图象如图所示,则下列结论不正确的是()A.函数在区间上单调递增B.函数在区间上单调递减C.函数在处取得极大值D.函数在处取得极小值6、直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是A.B.C.D.7、设函数的定义域为,满足,且当时,.若对任意,都有,则的取值范围是()A.B.C.D.8、若抛物线的焦点与椭圆的左焦点重合,则m的值为()A.4B.-4C.2D.-29、若是真命题,是假命题,则A.是真命题B.是假命题C.是真命题D.是真命题10、数学家欧拉在1765年发现,任意三角形的外心、重心、垂心位于同一条直线上,这条直线称为欧拉线.已知的顶点,,若其欧拉线的方程为,则顶点的坐标为()A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、已知,若三个数成等差数列,则_________;若三个数成等比数列,则__________12、设P为圆上一动点,Q为直线上一动点,O为坐标原点,则的最小值为___13、古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点A、B的距离之比为定值(且)的点的轨迹是圆”.后来人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆,在平面直角坐标系中,,,点满足,则点P的轨迹方程为__________.(答案写成标准方程),的最小值为___________.14、已知抛物线C:,经过点P(4,1)的直线l与抛物线C相交于A,B两点,且点P恰为AB的中点,F为抛物线的焦点,则______15、曲线在点处的切线方程为_______.16、定义方程的实数根叫做函数的“新驻点”.(1)设,则在上的“新驻点”为___________;(2)如果函数与的“新驻点”分别为、,那么和的大小关系是___________.三、解答题(本题共5小题,每题12分,共60分)17、已知展开式中,第三项的系数与第四项的系数相等(1)求n的值;(2)求展开式中有理项的系数之和(用数字作答)18、已知抛物线C:,过点且斜率为k的直线与抛物线C相交于P,Q两点.(1)设点B在x轴上,分别记直线PB,QB的斜率为.若,求点B的坐标;(2)过抛物线C的焦点F作直线PQ的平行线与抛物线C相交于M,N两点,求的值.19、如图,在三棱锥中,,点为线段上的点.(1)若平面,试确定点的位置,并说明理由;(2)若,,,在(1)成立的前提下,求二面角的余弦值.20、已知椭圆)过点A(0,),且与双曲线有相同的焦点(1)求椭圆C的方程;(2)设M,N是椭圆C上异于A的两点,且满足,试判断直线MN是否过定点,并说明理由21、保护生态环境,提倡环保出行,节约资源和保护环境,某地区从2016年开始大力提倡新能源汽车,每年抽样1000汽车调查,得到新能源汽车y辆与年份代码x年的数据如下表:年份20162017201820192020年份代码第x年12345新能源汽车y辆305070100110(1)建立y关于x的线性回归方程;(2)假设该地区2022年共有30万辆汽车,用样本估计总体来预测该地区2022年有多少新能源汽车参考公式:回归方程斜率和截距的最小二乘估计公式分别为,参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:D【解析】根据等比数列的通项公式,前n项和的意义,可逐项分析求解.【详解】因为等比数列的前n项和为,且满足公比0<q<1,<0,所以当时,由可得,故数列为增函数,故B正确;由0<q<1,<0知,所以,故一定单调递减,故A正确;因为当时,,,所以,即-,当时,,综上,故C正确;若=,且k≠1,则,即,因为,故,故矛盾,所以D不正确.故选:D2、答案:C【解析】首先写出展开式的通项公式,然后结合通项公式确定的系数即可.【详解】展开式的通项公式为:,令可得:,则的系数为:.故选:C.【点睛】二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项3、答案:C【解析】根据不