预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共23页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024-2025学年江苏百校联考高二数学第一学期期末经典试题含解析一、单选题(本题共10小题,每题5分,共50分)1、在四棱锥中,底面是正方形,为的中点,若,则()AB.C.D.2、若x,y满足约束条件,则的最大值为()A.2B.3C.4D.53、已知双曲线的左、右焦点分别为,半焦距为c,过点作一条渐近线的垂线,垂足为P,若的面积为,则该双曲线的离心率为()A.3B.2C.D.4、有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组可能性相同,则这两位同学参加同一个兴趣小组的概率为A.B.C.D.5、函数的图象如图所示,则下列大小关系正确的是()A.B.C.D.6、在直三棱柱中,侧面是边长为的正方形,,,且,则异面直线与所成的角为()A.B.C.D.7、已知等差数列的前项和为,,公差,.若取得最大值,则的值为()A.6或7B.7或8C.8或9D.9或108、南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,他所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,而是逐项差数之差或者高次差相等.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有一个高阶等差数列,其前6项分别为1,5,11,21,37,61,则该数列的第7项为()A.95B.131C.139D.1419、已知P是椭圆上的一点,是椭圆的两个焦点且,则的面积是()A.B.2C.D.110、如图,是水平放置的的直观图,其中,,分别与轴,轴平行,则()A.2B.C.4D.二、填空题(本题共6小题,每题5分,共30分)11、总书记在2021年2月25日召开的全国脱贫攻坚总结表彰大会上发表重要讲话,庄严宣告,在迎来中国共产党成立一百周年的重要时刻,我国脱贫攻坚取得了全面胜利.在脱贫攻坚过程中,为了解某地农村经济情况,工作人员对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下列结论中所存确结论的序号是____________①该地农户家庭年收入低于4.5万元的农户比率估计为6%;②该地农户家庭年收入不低于10.5万元的农户比率估计为10%;③估计该地农户家庭年收入的平均值不超过6.5万元;④估计该地有一半以上农户,其家庭年收入介于4.5万元至8.5万元之间12、已知.若在定义域内单调递增,则实数的取值范围为______.13、甲、乙两名运动员5场比赛得分的茎叶图如图所示,已知甲得分的极差为32,乙得分的平均值为24,则甲、乙两组数据的中位数是______.14、设函数,若存在实数使得成立,则的取值范围是__________.15、已知数列的各项均为正数,其前项和满足,则__________;记表示不超过的最大整数,例如,若,设的前项和为,则__________16、某厂将从64名员工中用系统抽样的方法抽取4名参加2011年职工劳技大赛,将这64名员工编号为1~64,若已知8号、24号、56号在样本中,那么样本中最后一个员工的号码是__________三、解答题(本题共5小题,每题12分,共60分)17、已知圆与轴相切,圆心在直线上,且到直线的距离为(1)求圆的方程;(2)若圆的圆心在第一象限,过点的直线与相交于、两点,且,求直线的方程18、如图,在四棱锥中,四边形是直角梯形,,,,为等边三角形.(1)证明:;(2)求点到平面的距离.19、已知函数()(1)讨论函数的单调区间;(2)若有两个极值点,(),且不等式恒成立,求实数m的取值范围20、已知函数,,其中.(1)试讨论函数的单调性;(2)若,证明:.21、已知圆M的圆心在直线上,且圆心在第一象限,半径为3,圆M被直线截得的弦长为4.(1)求圆M的方程;(2)设P是直线上的动点,证明:以MP为直径的圆必过定点,并求所有定点的坐标.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:C【解析】由为的中点,根据向量的运算法则,可得,即可求解.【详解】由底面是正方形,E为的中点,且,根据向量的运算法则,可得.故选:C.2、答案:C【解析】画出约束条件的可行域,利用目标函数的几何意义即可求解【详解】作出可行域如图所示,把目标函数转化为,平移,经过点时,纵截距最大,所以的最大值为4.故选:C3、答案:D【解析】根据给定条件求出,再计算面积列式计算作答.【详解】依题意,点,由双曲线对称性不妨取渐近线,即,则,令坐标原点为O,中,,又点O是线段的中点,因此,,则有,即,,,所以双曲线的离心率为故选:D4、答案:A【解析】每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=选A5、答案:C【解析】根据导数的几何意义可得答案.【详解】因为函数在某点处的