预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共20页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024-2025学年宁夏银川市宁夏大学附中高二数学期末教学质量检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、如图在中,,,在内作射线与边交于点,则使得的概率是()A.B.C.D.2、已知双曲线的左焦点为F,O为坐标原点,M,N两点分别在C的左、右两支上,若四边形OFMN为菱形,则C的离心率为()A.B.C.D.3、数列,,,,…,的通项公式可能是()A.B.C.D.4、已知,,,则点C到直线AB的距离为()A.3B.C.D.5、用数学归纳法时,从“k到”左边需增乘的代数式是()A.B.C.D.6、在空间直角坐标系中,已知点A(1,1,2),B(-3,1,-2),则线段AB的中点坐标是()A.(-2,1,2)B.(-1,1,0)C.(-2,0,1)D.(-1,1,2)7、设函数在定义域内可导,的图象如图所示,则导函数的图象可能为()A.B.C.D.8、若函数在上为单调减函数,则的取值范围()A.B.C.D.9、已知点与不重合的点A,B共线,若以A,B为圆心,2为半径的两圆均过点,则的取值范围为()A.B.C.D.10、如图,在四面体中,,,两两垂直,已知,,则直线与平面所成角的正弦值为()A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、已知数列前项和为,且,则_______.12、已知数列满足,则=________.13、已知命题“,”为假命题,则实数m的取值范围为______14、若函数是上的增函数,则实数的取值范围是__________.15、在公差不为的等差数列中,,,成等比数列,数列的前项和为(1)求数列的通项公式;(2)若,且数列的前项和为,求16、若和或都是假命题,则的范围是__________三、解答题(本题共5小题,每题12分,共60分)17、已知直线l过点,与两坐标轴的正半轴分别交于A,B两点,O为坐标原点(1)若的面积为,求直线l的方程;(2)求的面积的最小值18、已知.(1)当,时,求中含项的系数;(2)用、表示,写出推理过程19、已知抛物线的顶点在原点,焦点在轴上,且抛物线上有一点到焦点的距离为3,直线与抛物线交于,两点,为坐标原点(1)求抛物线的方程;(2)求的面积.20、要设计一种圆柱形、容积为500mL的一体化易拉罐金属包装,如何设计才能使得总成本最低?21、在△中,已知、、分别是三内角、、所对应的边长,且(Ⅰ)求角的大小;(Ⅱ)若,且△的面积为,求.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:C【解析】由题意可得,根据三角形中“大边对大角,小边对小角”的性质,将转化为求的概率,又因为,,从而可得的概率【详解】解:在中,,,所以,即,要使得,则,又因为,,则的概率是故选:C【点睛】本题考查几何概型及其计算方法的知识,属于基础题2、答案:C【解析】由题意可得且,从而求出点的坐标,将其代入双曲线方程中,即可得出离心率.【详解】由题意,四边形为菱形,如图,则且,分别为的左,右支上的点,设点在第二象限,在第一象限.由双曲线的对称性,可得,过点作轴交轴于点,则,所以,则,所以,所以,则,即,解得,或,由双曲线的离心率,所以取,则故选:C3、答案:D【解析】利用数列前几项排除A、B、C,即可得解;【详解】解:由,排除A,C,由,排除B,分母为奇数列,分子为,故数列的通项公式可以为,故选:D4、答案:D【解析】应用空间向量的坐标运算求在上投影长及的模长,再应用勾股定理求点C到直线AB的距离.【详解】因为,,所以设点C到直线AB的距离为d,则故选:D5、答案:C【解析】分别求出n=k时左端的表达式,和n=k+1时左端的表达式,比较可得“n从k到k+1”左端需增乘的代数式【详解】当n=k时,左端=(k+1)(k+2)(k+3)…(2k),当n=k+1时,左端=(k+2)(k+3)…(2k)(2k+1)(2k+2),∴左边需增乘的代数式是故选:C【点睛】本题考查用数学归纳法证明等式,分别求出n=k时左端的表达式和n=k+1时左端的表达式,是解题的关键6、答案:B【解析】利用中点坐标公式直接求解【详解】在空间直角坐标系中,点,1,,,1,,则线段的中点坐标是,,,1,故选:B.7、答案:D【解析】根据的图象可得的单调性,从而得到在相应范围上的符号和极值点,据此可判断的图象.【详解】由的图象可知,在上为增函数,且在上存在正数,使得在上为增函数,在为减函数,故在有两个不同的零点,且在这两个零点的附近,有变化,故排除A,B.由在上为增函数可得在上恒成立,故排除C.故选:D.【点睛】本题考查导函数图象的识别,此类问题应根据原函数的单调性来考虑导函数的符号与零点情况,本题属于基础题.8、答案:A【解析】分析可知对任意的恒成立,利用参变量分离法结合二次函数的基本性质