预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共23页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届福建省龙岩市第一中学高二数学第一学期期末监测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知{an}是以10为首项,-3为公差的等差数列,则当{an}的前n项和Sn,取得最大值时,n=()A.3B.4C.5D.62、在直三棱柱中,底面是等腰直角三角形,,点在棱上,且,则与平面所成角的正弦值为()A.B.C.D.3、双曲线:的实轴长为()A.B.C.4D.24、过抛物线的焦点F的直线l与抛物线交于PQ两点,若以线段PQ为直径的圆与直线相切,则()A.8B.7C.6D.55、已知函数,其中e是自然数对数的底数,若,则实数a的取值范围是A.B.C.D.6、已知数列的前项和为,满足,,,则()A.B.C.,,成等差数列D.,,成等比数列7、在矩形中,,在该矩形内任取一点M,则事件“”发生的概率为()A.B.C.D.8、等差数列前项和,已知,,则的值是().A.B.C.D.9、已知命题:,;命题:,.则下列命题中为真命题的是()A.B.C.D.10、如图,在三棱锥S-ABC中,E,F分别为SA,BC的中点,点G在EF上,且满足,若,,,则()A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、如图,四边形为直角梯形,且,为正方形,且平面平面,,,,则______,直线与平面所成角的正弦值为______12、4与16的等比中项是________.13、已知拋物线的焦点F为,过点F的直线交该抛物线的准线于点A,与该抛物线的一个交点为B,且,则______14、如图的一系列正方形图案称为谢尔宾斯基地毯,图案的做法是:把一个正方形分成9个全等的小正方形,对中间的一个小正方形进行着色得到第1个图案(图1);在第1个图案中对没有着色的小正方形再重复以上做法得到第2个图案(图2);以此类推,每进行一次操作,就得到一个新的正方形图案,设原正方形的边长为1,记第n个图案中所有着色的正方形的面积之和为,则数列的通项公式______15、等差数列,的前项和分别为,,且,则______.16、已知空间向量,,且,则值为______三、解答题(本题共5小题,每题12分,共60分)17、如图,正三棱柱的侧棱长为,底面边长为,点为的中点,点在直线上,且(1)证明:面;(2)求平面和平面夹角的余弦值18、已知点到两个定点的距离比为(1)求点的轨迹方程;(2)若过点的直线被点的轨迹截得的弦长为,求直线的方程19、如图,在四棱锥S−ABCD中,已知四边形ABCD是边长为的正方形,点S在底面ABCD上的射影为底面ABCD的中心点O,点P在棱SD上,且△SAC的面积为1(1)若点P是SD的中点,求证:平面SCD⊥平面PAC;(2)在棱SD上是否存在一点P使得二面角P−AC−D的余弦值为?若存在,求出点P的位置;若不存在,说明理由20、设:实数满足,:实数满足.(1)若,且为真,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围.21、已知椭圆的短轴长是2,且离心率为(1)求椭圆E的方程;(2)已知,若直线与椭圆E相交于A,B两点,线段AB的中点为M,是否存在常数,使恒成立,并说明理由参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:B【解析】由题可得当时,,当时,,即得.【详解】∵{an}是以10为首项,-3为公差的等差数列,∴,故当时,,当时,,故时,取得最大值故选:B.2、答案:C【解析】取AC的中点M,过点M作,且使得,进而证明平面,然后判断出是与平面所成的角,最后求出答案.【详解】如图,取AC的中点M,因为,则,过点M作,且使得,则四边形BDNM是平行四边形,所以.由题意,平面ABC,则平面ABC,而平面ABC,所以,又,所以平面,而所以平面,连接DA,NA,则是与平面所成的角.而,于是,.故选:.3、答案:A【解析】根据双曲线的几何意义即可得到结果.【详解】因为双曲线的实轴长为2a,而双曲线中,,所以其实轴长为故选:A4、答案:C【解析】依据抛物线定义可以证明:以过抛物线焦点F的弦PQ为直径的圆与其准线相切,则可以顺利求得线段的长.【详解】抛物线的焦点F,准线取PQ中点H,分别过P、Q、H作抛物线准线的垂线,垂足分别为N、M、E则四边形为直角梯形,为梯形中位线,由抛物线定义可知,,,则故,即点H到抛物线准线的距离为的一半,则以线段PQ为直径的圆与抛物线的准线相切.又以线段PQ为直径的圆与直线相切,则以线段PQ为直径的圆的直径等于直线与直线间的距离.即故选:C5、答案:B【解析】利用函数的奇偶性将函数转化为f(M)≤f(N)的形式,再利用单调性脱去对应法则f,转化为一般的二次不等式求解即可【详解】由于,,则f(﹣x)=﹣x3+e﹣x﹣ex=﹣f(x),故函数f(x)为奇函数故原不等式f(a﹣1