预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共20页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届湖北省孝感市高二数学第二学期期末学业质量监测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知空间中四点,,,,则点D到平面ABC的距离为()A.B.C.D.02、圆与圆的交点为A,B,则线段AB的垂直平分线的方程是A.B.C.D.3、已知椭圆:的离心率为,则实数()A.B.C.D.4、已知等比数列满足,则q=()A.1B.-1C.3D.-35、已知等差数列的前n项和为,,,若(),则n的值为()A.15B.14C.13D.126、如图,在三棱锥S—ABC中,点E,F分别是SA,BC的中点,点G在棱EF上,且满足,若,,,则()A.B.C.D.7、设是椭圆的两个焦点,是椭圆上一点,且.则的面积为()A.6B.C.8D.8、已知,,2成等差数列,则在平面直角坐标系中,点M(x,y)的轨迹为()A.B.C.D.9、已知过点A(a,0)作曲线C:y=x•ex的切线有且仅有两条,则实数a的取值范围是()A.(﹣∞,﹣4)∪(0,+∞)B.(0,+∞)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣∞,﹣1)10、已知直线与圆交于两点,过分别作的垂线与轴交于两点,则A.2B.3C.D.4二、填空题(本题共6小题,每题5分,共30分)11、已知,,则以AB为直径的圆的方程为___________.12、过抛物线的焦点的直线交抛物线于点、,且点的横坐标为,过点和抛物线顶点的直线交抛物线的准线于点,则的面积为___________.13、已知为椭圆上的一点,,分别为圆和圆上的点,则的最小值为______14、函数在点处的切线方程是_________15、在长方体中,M、N分别是BC、的中点,若,则______16、狄利克雷是十九世纪德国杰出的数学家,对数论、数学分析和数学物理有突出贡献.狄利克雷曾提出了“狄利克雷函数”.若,根据“狄利克雷函数”可求___________.三、解答题(本题共5小题,每题12分,共60分)17、已知函数,曲线在点处的切线与直线垂直(其中为自然对数的底数)(1)求的值;(2)是否存在常数,使得对于定义域内的任意,恒成立?若存在,求出的值;若不存在,请说明理由18、已知椭圆的焦点为,且长轴长是焦距的倍(1)求椭圆的标准方程;(2)若斜率为1的直线与椭圆相交于两点,已知点,求面积的最大值19、在复数集C内方程有六个根分别为(1)解出这六个根;(2)在复平面内,这六个根对应的点分别为A,B,C,D,E,F;求多边形ABCDEF的面积20、写出下列命题的否定,并判断它们的真假:(1):任意两个等边三角形都是相似的;(2):,.21、已知椭圆的右焦点为F(,0),且点M(-,)在椭圆上.(1)求椭圆的方程;(2)直线l过点F,且与椭圆交于A,B两点,过原点O作l的垂线,垂足为P,若,求λ的值.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:C【解析】根据题意,求得平面的一个法向量,结合距离公式,即可求解.【详解】由题意,空间中四点,,,,可得,设平面的法向量为,则,令,可得,所以,所以点D到平面ABC的距离为.故选:C.2、答案:A【解析】圆的圆心为,圆的圆心为,两圆的相交弦的垂直平分线即为直线,其方程为,即;故选A.【点睛】本题考查圆的一般方程、两圆的相交弦问题;处理直线和圆、圆和圆的位置关系时,往往结合平面几何知识(如本题中,求两圆的相交弦的垂直平分线的方程即为经过两圆的圆心的直线方程)可减小运算量.3、答案:C【解析】根据题意,先求得的值,代入离心率公式,即可得答案.【详解】因为,所以所以,解得.故选:C4、答案:C【解析】根据已知条件,利用等比数列的基本量列出方程,即可求得结果.【详解】因为,故可得;解得.故选:C.5、答案:B【解析】由已知条件列方程组求出,再由列方程求n的值【详解】设等差数列的公差为,则由,,得,解得,因为,所以,即,解得或(舍去),故选:B6、答案:D【解析】利用空间向量的加、减运算即可求解.详解】由题意可得故选:D7、答案:B【解析】利用椭圆的几何性质,得到,,进而利用得出,进而可求出【详解】解:由椭圆的方程可得,所以,得且,,在中,由余弦定理可得,而,所以,,又因为,,所以,所以,故选:B8、答案:A【解析】已知,,2成等差数列,得到,化简得到【详解】已知,,2成等差数列,得到,化简得到可知是焦点在x轴上的抛物线的一支.故答案为A.【点睛】这个题目考查的是对数的运算以及化简公式的应用,也涉及到了轨迹的问题,求点的轨迹,通常是求谁设谁,再根据题干将等量关系转化为代数关系,从而列出方程,化简即可.9、答案:A【解析】设出切点,对函数求导得到切点处的斜率,由点斜式得到切线方程,化简为,整理得到方程有两个解即可,解出不等式即可.【详解】设切点为,,,则切线方程