预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共21页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届河南省郑州市河南实验中学高二数学期末复习检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、若双曲线的离心率为,则其渐近线方程为A.y=±2xB.y=C.D.2、已知数列的前项和满足,记数列的前项和为,.则使得的值为()A.B.C.D.3、已知点F为抛物线C:的焦点,点,若点Р为抛物线C上的动点,当取得最大值时,点P恰好在以F,为焦点的椭圆上,则该椭圆的离心率为()A.B.C.D.4、“﹣3<m<4”是“方程表示椭圆”的()条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要5、下图称为弦图,是我国古代三国时期赵爽为《周髀算经》作注时为证明勾股定理所绘制,我们新教材中利用该图作为“()”的几何解释A.如果,,那么B.如果,那么C.对任意实数和,有,当且仅当时等号成立D.如果,那么6、执行如图所示的算法框图,则输出的结果是()A.B.C.D.7、在长方体中,,,则异面直线与所成角的正弦值是()A.B.C.D.8、在中,角A,B,C的对边分别为a,b,c.若,,则的形状为()A.直角三角形B.等边三角形C.等腰直角三角形D.等腰或直角三角形9、为调查参加考试的高二级1200名学生的成绩情况,从中抽查了100名学生的成绩,就这个问题来说,下列说法正确的是()A.1200名学生是总体B.每个学生是个体C.样本容量是100D.抽取的100名学生是样本10、如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、已知,是椭圆:的两个焦点,点在上,则的最大值为________12、双曲线的离心率______.13、为和的等差中项,则_____________.14、过点,且周长最小的圆的标准方程为______15、记为等比数列的前n项和,若,公比,则______16、的展开式中的系数为_________三、解答题(本题共5小题,每题12分,共60分)17、已知数列中,,().(1)求证:是等比数列,并求的通项公式;(2)数列满足,求数列的前项和为.18、已知:对任意,都有;:存在,使得(1)若“且”为真,求实数的取值范围;(2)若“或”为真,“且”为假,求实数的取值范围19、已知函数.(I)当时,求曲线在处的切线方程;(Ⅱ)若当时,,求的取值范围.20、已知a,b,c分别为△ABC三个内角A,B,C的对边,,,△ABC的面积为(1)求a;(2)若D为BC边上一点,且∠BAD=,求∠ADC的正弦值21、在对某老旧小区污水分流改造时,需要给该小区重新建造一座底面为矩形且容积为324立方米的三级污水处理池(平面图如图所示).已知池的深度为2米,如果池四周围墙的建造单价为400元/平方米,中间两道隔墙的建造单价为248元/平方米,池底的建造单价为80元/平方米,池盖的建造单价为100元/平方米,建造此污水处理池相关人员的劳务费以及其他费用是9000元.(水池所有墙的厚度以及池底池盖的厚度按相关规定执行,计算时忽略不计)(1)现有财政拨款9万元,如果将污水处理池的宽建成9米,那么9万元的拨款是否够用?(2)能否通过合理的设计污水处理池的长和宽,使总费用最低?最低费用为多少万元?参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:B【解析】双曲线的离心率为,渐进性方程为,计算得,故渐进性方程为.【考点定位】本小题考查了离心率和渐近线等双曲线的性质.2、答案:B【解析】由,求得,得到,结合裂项法求和,即可求解.【详解】数列的前项和满足,当时,;当时,,当时,适合上式,所以,则,所以.故选:B.3、答案:D【解析】过点P引抛物线准线的垂线,交准线于D,根据抛物线的定义可知,记,根据题意,当最小,即直线与抛物线相切时满足题意,进而解出此时P的坐标,解得答案即可.【详解】如图,易知点在抛物线C的准线上,作PD垂直于准线,且与准线交于点D,记,则.由抛物线定义可知,.由图可知,当取得最大值时,最小,此时直线与抛物线相切,设切线方程为,代入抛物线方程并化简得:,,方程化为:,代入抛物线方程解得:,即,则,.于是,椭圆的长轴长,半焦距,所以椭圆的离心率.故选:D.4、答案:B【解析】求出方程表示椭圆的充要条件是且,由此可得答案.【详解】因为方程表示椭圆的充要条件是,解得且,所以“﹣3<m<4”是“方程表示椭圆”的必要不充分条件.故选:B【点睛】本题考查了由方程表示椭圆求参数的范围,考查了充要条件和必要不充分条件,本题易错点警示:漏掉,本题属于基础题.5、答案:C【解析】设图中直角三角形边长分别为a,b,则斜边为,则可表示出阴影面积和正方形面积,