预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共24页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届河南省郑州市河南实验中学高二数学第二学期期末监测试题含解析一、单选题(本题共10小题,每题5分,共50分)1、函数的导数记为,则等于()A.B.C.D.2、焦点在轴的正半轴上,且焦点到准线的距离为的抛物线的标准方程是()A.B.C.D.3、若双曲线离心率为,过点,则该双曲线的方程为()A.B.C.D.4、已知直线的方程为,则该直线的倾斜角为()A.B.C.D.5、“”是直线与直线平行的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6、已知曲线的方程为,则下列说法正确的是()①曲线关于坐标原点对称;②曲线是一个椭圆;③曲线围成区域的面积小于椭圆围成区域的面积.A.①B.①②C.③D.①③7、已知函数,则()A.函数的极大值为,无极小值B.函数的极小值为,无极大值C.函数的极大值为0,无极小值D.函数的极小值为0,无极大值8、设等差数列前n项和是,若,则的通项公式可以是()A.B.C.D.9、曲线在处的切线如图所示,则()A.B.C.D.10、已知A,B,C三点不共线,O是平面ABC外一点,下列条件中能确定点M与点A,B,C一定共面的是A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、已知一个圆锥的底面半径为6,其体积为则该圆锥的侧面积为________.12、已知、是椭圆的两个焦点,点在椭圆上,且,,则椭圆离心率是___________13、已知抛物线的焦点与的右焦点重合,则__________.14、一个六棱锥的体积为,其底面是边长为的正六边形,侧棱长都相等,则该六棱锥的侧面积为.15、将由2,5,8,11,14,…组成的等差数列,按顺序写在练习本上,已知每行写13个,每页有21行,则5555在第______页第______行.(用数字作答)16、若椭圆的焦点在轴上,过点作圆的切线,切点分别为,,直线恰好经过椭圆的上焦点和右顶点,则椭圆的方程是________________三、解答题(本题共5小题,每题12分,共60分)17、如图,ABCD是边长为2的正方形,DE⊥平面ABCD,AF∥DE,DE=2AF=2(1)证明:AC∥平面BEF;(2)求点C到平面BEF的距离18、已知抛物线过点,是抛物线的焦点,直线交抛物线于另一点,为坐标原点.(1)求抛物线的方程和焦点的坐标;(2)抛物线的准线上是否存在点使,若存在请求出点坐标,若不存在请说明理由.19、2022北京冬奥会即将开始,北京某大学鼓励学生积极参与志愿者的选拔.某学院有6名学生通过了志愿者选拔,其中4名男生,2名女生(1)若从中挑选2名志愿者,求入选者正好是一名男生和一名女生的概率;(2)若从6名志愿者中任选3人负责滑雪项目服务岗位,那么现将6人分为A、B两组进行滑雪项目相关知识及志愿者服务知识竞赛,共赛10局.A、B两组分数(单位:分)如下:A:125,141,140,137,122,114,119,139,121,142B:126,115,143,126,143,115,139,139,115,139从统计学角度看,应选择哪个组更合适?理由是什么?20、如图甲,平面图形中,,沿将折起,使点到点的位置,如图乙,使.(1)求证:平面平面;(2)若点满足,求点到直线的距离.21、如图,在四棱锥P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E为棱AD的中点,异面直线PA与CD所成的角为90°.(I)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;(II)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:D【解析】求导后代入即可.【详解】,.故选:D.2、答案:A【解析】直接由焦点位置及焦点到准线的距离写出标准方程即可.【详解】由焦点在轴的正半轴上知抛物线开口向上,又焦点到准线的距离为,故抛物线的标准方程是.故选:A.3、答案:B【解析】分析可得,再将点代入双曲线的方程,求出的值,即可得出双曲线的标准方程.【详解】,则,,则双曲线的方程为,将点的坐标代入双曲线的方程可得,解得,故,因此,双曲线的方程为.故选:B4、答案:D【解析】设直线倾斜角为,则,即可求出.【详解】设直线的倾斜角为,则,又因为,所以.故选:D.5、答案:C【解析】先根据直线平行的充要条件求出a,然后可得.【详解】若,则,,显然平行;若直线,则且,即.故“”是直线与直线平行的充要条件.故选:C6、答案:D【解析】对于①在方程中换为,换为可判断;对于②分析曲线的图形是两个抛物线的部分组成的可判断;对于③在第一象限内,分析椭圆的图形与曲线图形的位置关系可判断.【详解】在曲线的方程中,换为,换为,方程不变,故曲线关于坐标原点对称所以①