预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共19页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年河南省商丘市永城市实验中学数学八上期末学业水平测试模拟试题含解析注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、单选题(本题共10小题,每题3分,共30分)1、如图,直线,,,则的度数是()A.B.C.D.2、如图,AF∥CD,BC平分∠ACD,BD平分∠EBF,且BC⊥BD,下列结论:①BC平分∠ABE;②AC∥BE;③∠BCD+∠D=90°;④∠DBF=2∠ABC.其中正确的个数为()A.1个B.2个C.3个D.4个3、如图,正方形ABCD中,E,F分别为AB,CD的中点,连接DE,BF,CE,AF,正方形ABCD的面积为1,则阴影部分的面积为()A.B.C.D.4、已知点在第四象限,且点P到x轴的距离为3,到y轴的距离为6,则点P的坐标是()A.B.C.D.或5、的平方根是()A.B.C.D.6、下面有4个汽车标志图案,其中是中心对称图形的是()A.B.C.D.7、已知:AB=AD,∠C=∠E,CD、BE相交于O,下列结论:(1)BC=DE,(2)CD=BE,(3)△BOC≌△DOE;其中正确的是()A.0个B.1个C.2个D.3个8、一组数据2,2,4,3,6,5,2的众数和中位数分别是A.3,2B.2,3C.2,2D.2,49、分式方程的解为()A.x=1B.x=2C.x=3D.x=410、下列各组数据中的三个数作为三角形的边长,其中不能构成直角三角形的是()A.3,4,5B.,,C.8,15,17D.5,12,13二、填空题(本题共6小题,每题3分,共18分)11、当______时,分式的值为1.12、在△ABC中,∠A:∠B:∠C=2:3:4,则∠C=_____.13、分解因式:.14、若分式的值为零,则x=______.15、如图所示,在中,,,将其折叠,使点落在上的点处,折痕为,则__________度.16、比较大小:_____三、解答题(本题共6小题,每题12分,共72分)17、如图,△ABC中,∠B=90°,AB=3,BC=4,AC=5;实践与操作:过点A作一条直线,使这条直线将△ABC分成面积相等的两部分,直线与BC交于点D.(尺规作图,不写作法,保留作图痕迹,标清字母)推理与计算:求点D到AC的距离.18、某公司在甲、乙仓库共存放某种原料450吨,如果运出甲仓库所存原料的60%,乙仓库所存原料的40%,那么乙仓库剩余的原料比甲仓库剩余的原料多30吨.(1)求甲、乙两仓库各存放原料多少吨;(2)现公司需将300吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120元/吨和100元/吨.经协商,从甲仓库到工厂的运价可优惠a元吨(10≤a≤30),从乙仓库到工厂的运价不变,设从甲仓库运m吨原料到工厂,请求出总运费W关于m的函数解析式(不要求写出m的取值范围);(3)在(2)的条件下,请根据函数的性质说明:随着m的增大,W的变化情况.19、如图,在四边形ABCD中,∠B=90°,AB∥ED,交BC于E,交AC于F,DE=BC,.(1)求证:△FCD是等腰三角形(2)若AB=3.5cm,求CD的长.20、先化简,再求值:,在a=±2,±1中,选择一个恰当的数,求原式的值.21、如图,AB⊥BC,DC⊥BC,若∠DBC=45°,∠A=70°,求∠D,∠AED,∠BFE的度数.22、如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.(1)求作∠ABC的平分线,分别交AD,AC于E,F两点;(要求:尺规作图,保留作图痕迹,不写作法)(2)证明:AE=AF.参考答案一、单选题(本题共10小题,每题3分,共30分)1、答案:C【分析】根据平行线的性质,得,结合三角形内角和定理,即可得到答案.【详解】∵,∴,∵,∴=180°-32°-45°=103°,故选C.本题主要考查平行线的性质定理以及三角形内角和定理,掌握两直线平行,同位角相等,是解题的关键.2、答案:C【解析】分析:根据平行线的性质、角平分线的定义、余角的定义作答.详解:①∵BC⊥BD,∴∠DBE+∠CBE=90°,∠ABC+∠DBF=90°,又∵BD平分∠EBF,∴∠DBE=∠DBF,∴∠ABC=∠CBE,即BC平分∠ABE,正确;②由AB∥CE,BC平分∠ABE、∠ACE易证∠ACB=∠CBE,∴AC∥BE正确;③∵BC⊥AD,∴∠BCD+∠D=90°正确;④无法证明∠DBF=60°,故错误.故选C.点睛:此题难度中等,需灵活应用