预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共23页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024-2025学年甘肃省张掖市临泽二中学、三中学、四中学数学八上期末监测模拟试题含解析注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、单选题(本题共10小题,每题3分,共30分)1、如图,在中,平分交于点,平分,,交于点,若,则()A.75B.100C.120D.1252、已知直角三角形的两边长分别为,则第三边长可以为()A.B.C.D.3、将一次函数(为常数)的图像位于轴下方的部分沿轴翻折到轴上方,和一次函数(为常数)的图像位于轴及上方的部分组成“”型折线,过点作轴的平行线,若该“”型折线在直线下方的点的横坐标满足,则的取值范围是()A.B.C.D.4、在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是()A.B.C.D.5、一次函数y=-3x-2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6、已知一个三角形的两边长分别为和,则这个三角形的第三边长可能是()A.B.C.D.7、、在数轴上的位置如图所示,那么化简的结果是()A.B.C.D.8、点P(﹣3,﹣4)位于()A.第一象限B.第二象限C.第三象限D.第四象限9、如图,的三边、、的长分别为6、4、8,其三条内角平分线将分成3个三角形,则()A.B.C.D.10、下列运算中正确的是()A.x2÷x8=x﹣4B.a•a2=a2C.(a3)2=a6D.(3a)3=9a3二、填空题(本题共6小题,每题3分,共18分)11、若规定用符号表示一个实数的整数部分,例如按此规定._______________________.12、将一组数据中的每一个数都加上1得到一组新的数据,那么在众数、中位数、平均数、方差这四个统计量中,值保持不变的是_____.13、若把多项式x2+5x﹣6分解因式为_____.14、解方程:.15、如图,为了测量池塘两端点间的距离,小亮先在平地上取一个可以直接到达点和点的点,连接并延长到点,使,连接并延长到点,使,连接.现测得米,则两点间的距离为__________米.16、如图1,在中,.动点从的顶点出发,以的速度沿匀速运动回到点.图2是点运动过程中,线段的长度随时间变化的图象.其中点为曲线部分的最低点.请从下面A、B两题中任选一作答,我选择________题.A.的面积是______,B.图2中的值是______.三、解答题(本题共6小题,每题12分,共72分)17、在中,垂直平分,分别交、于点、,垂直平分,分别交,于点、.⑴如图①,若,求的度数;⑵如图②,若,求的度数;⑶若,直接写出用表示大小的代数式.18、铭润超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍.(1)试销时该品种苹果的进货价是每千克多少元?(2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折(“七折”即定价的70%)售完,那么超市在这两次苹果销售中共盈利多少元?19、如图,在平面直角坐标系中,已知四边形的顶点,.(1)画出四边形关于轴的对称图形;(2)请直接写出点关于轴的对称点的坐标:.20、如图,AB=AC,AB⊥AC,AD⊥AE,且∠ABD=∠ACE.求证:BD=CE.21、如图,是等边三角形,、、分别是、、上一点,且.(1)若,求;(2)如图2,连接,若,求证:.22、如图,已知正方形ABCD,AB=8,点E是射线DC上一个动点(点E与点D不重合),连接AE,BE,以BE为边在线段AD的右侧作正方形BEFG,连结CG.(1)当点E在线段DC上时,求证:△BAE≌△BCG;(2)在(1)的条件下,若CE=2,求CG的长;(3)连接CF,当△CFG为等腰三角形时,求DE的长.参考答案一、单选题(本题共10小题,每题3分,共30分)1、答案:B【分析】根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理求得CE1+CF1=EF1.【详解】∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE1+CF1=EF1=2.故选