预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共23页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024-2025学年上海市宜川中学高二数学期末达标检测试题含解析一、单选题(本题共10小题,每题5分,共50分)1、若关于x的方程有解,则实数a的取值范围为()A.B.C.D.2、已知,,若,则xy的最小值是()A.B.C.D.3、函数y=的最大值为Ae-1B.eC.e2D.4、已知向量,,,若,则实数()A.B.C.D.5、已知抛物线上的一点,则点M到抛物线焦点F的距离等于()A.6B.5C.4D.26、已知点B是A(3,4,5)在坐标平面xOy内的射影,则||=()A.B.C.5D.57、已知抛物线的焦点为,抛物线的焦点为,点在上,且,则直线的斜率为A.B.C.D.8、若直线与直线平行,则()A.B.C.D.9、若点P为抛物线y=2x2上的动点,F为抛物线的焦点,则|PF|的最小值为()A.2B.C.D.10、已知角的顶点与坐标原点重合,始边与x轴的非负半轴重合,角终边上有一点(1,2),为锐角,且,则()A.-18B.-6C.D.二、填空题(本题共6小题,每题5分,共30分)11、下列是某厂1~4月份用水量(单位:百吨)的一组数据,由其散点图可知,用水量与月份之间有较好的线性相关关系,其线性回归方程是,则_______.月份1234用水量4.5432.512、某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为的长方形纸,对折1次共可以得到,两种规格的图形,它们的面积之和,对折2次共可以得到,,三种规格的图形,它们的面积之和,以此类推,则对折4次共可以得到不同规格图形的种数为______;如果对折次,那么______.13、在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别为棱AA1,BB1的中点,G为棱A1B1上的一点,且A1G=(0<<2),则点G到平面D1EF的距离为____.14、如图的形状出现在南宋数学家杨辉所著的《算法九章·商功》中,后人称之为“三角垛”.已知某“三角垛”的最上层有1个球,第二层有3个球,第三层有6个球……设各层(从上往下)球数构成一个数列,则___________,___________.15、在数列中,,且,则_______.16、设,满足约束条件,则的最大值是_________.三、解答题(本题共5小题,每题12分,共60分)17、已知抛物线C:,经过的直线与抛物线C交于A,B两点(1)求的值(其中为坐标原点);(2)设F为抛物线C的焦点,直线为抛物线C的准线,直线是抛物线C的通径所在的直线,过C上一点P()()作直线与抛物线相切,若直线与直线相交于点M,与直线相交于点N,证明:点P在抛物线C上移动时,恒为定值,并求出此定值18、在平面直角坐标系xOy中,抛物线:,点,过点的直线l与抛物线交于A,B两点:当l与抛物线的对称轴垂直时,(1)求抛物线的标准方程;(2)若点A在第一象限,记的面积为,的面积为,求的最小值19、设函数.(1)求函数的单调区间;(2)求函数的极值.20、△的内角A,B,C的对边分别为a,b,c.已知(1)求角B的大小;(2)若△不为钝角三角形,且,,求△的面积21、已知椭圆的离心率为,右焦点为F,点A(a,0),且|AF|=1(1)求椭圆C的方程;(2)过点F的直线l(不与x轴重合)交椭圆C于点M,N,直线MA,NA分别与直线x=4交于点P,Q,求∠PFQ的大小参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:C【解析】将方程有解,转化为方程有解求解.【详解】解:因为方程有解,所以方程有解,因为,当且仅当,即时,等号成立,所以实数a的取值范围为,故选:C2、答案:C【解析】对使用基本不等式,这样得到关于的不等式,解出xy的最小值【详解】因为,,由基本不等式得:,所以,解得:,当且仅当,即,时,等号成立故选:C3、答案:A【解析】,所以函数在上递增,在上递减,所以函数的最大值为时,y==故选A点睛:研究函数最值主要根据导数研究函数的单调性,找到最值,分式求导公式要记熟4、答案:C【解析】先根据题意求出,然后再根据得出,最后通过计算得出结果.【详解】因为,,所以,又,,所以,即,解得.故选:.【点睛】本题主要考查向量数量积的坐标运算及向量垂直的相关性质,熟记运算法则即可,属于常考题型.5、答案:B【解析】将点代入抛物线方程求出,再由抛物线的焦半径公式可得答案.详解】将点代入抛物线方程可得,解得则故选:B6、答案:C【解析】先求出B(3,4,0),由此能求出||【详解】解:∵点B是点A(3,4,5)在坐标平面Oxy内的射影,∴B(3,4,0),则||==5故选:C7、答案:B【解析】根据抛物线的定义,求得p的值,即可得抛物线,的标准方程,求得抛物线的焦点坐标后,再根据斜率公式求解.【详解】因为,所以,解得,所以直线的斜率