预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

数据挖掘在电子商务的应用论文摘要:数据挖掘就是对潜在的数据及数据关联进行探索和发现。随着信息技术的不断发展,这一技术在电子商务领域逐渐得到普遍应用。基于此,本文就数据挖掘在电子商务中的应用进行研究,首先就数据挖掘中的路径分析技术、关联分析技术、聚类分析技术和分类分析技术进行简要介绍,然后分析数据挖掘在电子商务中的实际应用,从而提高数据挖掘技术的应用水平,增强电子商务的发展实力。关键词:数据挖掘;电子商务;潜在客户一、数据挖掘在电子商务中的技术应用就现阶段电子商务对数据挖掘技术的应用现状来看,主要应用到的技术包括以下几方面内容,分别是路径分析技术、关联分析技术、聚类分析技术和分类分析技术。就路径分析技术来看,主要对客户互联网访问路径的频繁性进行分析,通过大数据采集和处理,了解客户对各种网络页面的喜好程度和特点,从而对自身的设计进行针对性的改进,为客户提供更加人性化的服务;就关联分析技术来看,主要指的是对隐藏数据之间的关联进行分析,并且通过分析掌握其相互关联的规律,并根据这一规律对网络站点的结构进行相应的改进,使电子商务中存在相关性的商品能够一起被搜索出来,既为客户提供便利,同时提高交叉销售的几率;聚类分析技术指的是根据数据的信息,按照一定的原则对数据进行分类。就分类分析技术而言,主要通过分析数据掌握分类规则,然后按照这一规则对数据进行分类。二、数据挖掘在电子商务中的实际应用1.对潜在客户进行挖掘在电子商务中应用数据挖掘技术能够对潜在客户进行挖掘。例如商家可以对网站的日志记录进行分析,探究该记录中存在的规律,从而按照这一规律对网站的访问客户进行相应分类。在分类过程中,商家应该对客户属性和相关关系进行确定,对新客户与老客户之间存在重叠的属性进行识别,从而实现对访问网站新用户快速分类,在分类完毕后,商家可以通过分析新客户的属性特点,从而对新客户进行潜在性判断,如果判断新客户可以被作为商家的潜在客户,就可以为该客户提供个性化的页面服务,从而将新客户发展成为老客户。2.对驻留时间进行延长对于电子商务而言,商家必须提高客户在商品页面的驻留时间,并且使客户的购买兴趣和欲望得到激发。电子商务与传统商务最大的不同在于销售商具有虚拟性的特点,因此客户在购物选择时,对销售商的印象是没有差异的。销售商在不断提升自身服务水平的同时,应该对客户的浏览行为和特点进行分析,从而对客户的兴趣和需求进行进一步的了解,以此为依据调整自身的商品页面,用符合客户需求的广告和商品文案吸引客户的驻留时间,从而提高交易的几率。3.对网络站点进行优化电子商务主要依托于网站,因此网站优化也是提高电子商务发展水平的有效措施。利用数据挖掘技术对网络站点进行优化主要由两方面构成,一方面是对存在相关性的网页进行链接设计。例如对用户浏览页面的几率和特点进行分析,然后找出存在相关性的页面,增加网页链接这一功能,使客户的搜索更加便捷;另一方面是对客户的期望位置进行探索,例如对用户频率较高的访问位置进行分析,从而将频率较高的位置设置为客户的期望位置,并且在实际位置与期望位置间建立链接。另外,可以对用户的网页浏览习惯和信息喜好进行分析,强化用户在网页中的自助服务,例如将网页信息参照超市模式进行摆放,根据相关性分类,使用户能够通过自主浏览选择到心仪的产品,从而提高交易的几率。4.对营销手段进行改进在电子商务的实际运营过程中,很多客户都会在购买一种物品时同时选择具有相关性的其他物品,因此销售商应该对销售方式进行改进,利用数据挖掘技术实现交叉销售,从而提高营销水平。在应用交叉销售这一手段时,主要应该利用数据挖掘技术,对客户的喜好进行分析,从而提供具有针对性的商品。参考文献:[1]姜宁,牛永洁.Web数据挖掘在电子商务中的应用——以淘宝网为例[J].计算机时代,2016(7):49-52.[2]王红玉.数据挖掘在电子商务中的应用[J].电脑编程技巧与维护,2016(3):49-51.