预览加载中,请您耐心等待几秒...
1/5
2/5
3/5
4/5
5/5

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

数据挖掘在电子商务中的应用论文 1数据挖掘的概念及其过程 1.1数据挖掘 数据挖掘,即在数据库中的信息发现,是指在大量的、不完整的、模糊的、有噪音的和随机的数据中,提取出潜在的、不为人知的、同时又是非常有用的知识和信息的过程。数据挖掘是一项应用技术广泛的交叉学科,它聚集了众多不同领域的知识,例如人工智能、可视化、数据库、数理统计等。从始至终数据挖掘技术都是面向应用领域,不仅是对于特定数据库的简单检索查询,还包括对数据的不同层面、不同角度的统计、分析、推理和综合,以此得到问题的求解,以及发现事件之间的联系,还有对未发生活动的预测。另外数据挖掘技术在存在大量数据积累的电子商务行业有着广泛的应用,是现代商务企业发展的不二选择。 1.2数据挖掘的过程 1.2.1数据预处理 在实际情况中,企业获得的数据具有不完整性、模糊性和冗余性,所以数据挖掘技术针对的不是已得到的数据,而是潜在的数据信息,并通过预处理技术获得简洁、准确的数据。预处理的工作分为三步,数据合并、数据选择和数据清洗。先将多个数据库和文件中的数据进行合并,然后选择适合分析的数据信息集合,最后剔除无关记录,并将各个文件转换成方便数据挖掘的格式。 1.2.2模式发现 这个阶段就是利用挖掘计算技术挖掘出有用的、潜在的、新颖的、可以理解的知识和信息。像关联分析、聚类分析、路径选择、序列分析等都可以用于Web的挖掘技术。 1.2.3模式分析 这个阶段是将模式发现中没有用的模式和规则过滤掉。通过技术分析,得到有效的结论。常用关联规则、序列等手段。 2数据挖掘技术的方法 2.1关联分析 所谓的关联分析,就是利用数据间相互关联的规则进行数据挖掘,为的是挖掘数据间潜在的联系规则。比如,在进行关联分析时,能发现类似哪些产品更受客户的欢迎、为什么、产品优势有哪些、有多少客户会再次购买等问题。 2.2序列模式分析 这个过程和第一个关联分析有些类似,但主要任务是发现数据间的前后顺序联系,比如在这段时间里,企业先销售出x产品,随后销售y产品,然后是z产品,所以就形成x-y-z的销售序列,出现频率较高,进而对其进行分析。序列模式分析工作方向是:在指定的交易数据库中,找出按照时间排布的交易集,发现其中的高频序列,从而进行下一个步骤。 2.3分类分析 假设有一个数据库和一组互相区别的标记,利用特殊标记数据库中的每一个数据,这样的数据库被叫做训练集或者实例数据库。分类分析就是利用分析标记数据库中的每一个数据,对每个类别建立分析模型或做出精准的描述或者挖掘出分析模型,然后利用分类模式对数据库中的数据进行分类分析。 2.4聚类分析 聚类分析所根据的分类规则主要取决于聚类分析工具。不同的聚类方法,对于同样的记录集合会有不同的划分结果。聚类分析针对的未分类的记录,而且所有记录适合分成几类,事先也不知情,然后依据一定的分类规则,分析记录数据,确定每一个数据所对应的类别。 3数据挖掘技术在电子商务中的应用 3.1优化企业资源 企业盈利的关键是节约成本,利用数据挖掘技术可以找到企业消耗资源的关键点和各种活动的投入与产出比例,进而为企业提供科学合理的调整方案,例如资源循环利用、降低库存等方法。通过数据挖掘技术,企业可以预先知道市场上的商业信息,使企业把握市场动态,创造更多的盈利。 3.2管理客户资料 俗话说知己知彼,百战不殆。对于企业来说,了解客户是至关重要的,比如客户是男是女、爱好是什么、职业是什么等,从而根据不同客户需求,改善网络结构,推出个性化网页,吸引更多的客户对本企业的关注。例如对电子商务网站的网站流量进行分析。人们在点击或者是访问某一个网站的同时,就将个人对网站内容的反馈信息反映了出来,用户点击了哪一个链接,在哪个网页中停留的时间最长,采用了哪个搜索的项目或者是总共使用的浏览时间等信息都会被保存在网站中,将这些信息保存下来,进行数据分析,能够有效的确定用户的访问特点以及产品特征,从而提高电子商务信息提供的精确性。 3.3评估商业信誉 一个企业若是没有良好的商业信誉做基础,一切都是空口说白话。所以建立有效的商业评估制度就成了重中之重。利用数据挖掘技术对企业营销进行追踪,开展资产评估、发展潜力预测以及利润收益分析,建立完善的安全系统,对企业商誉安全进行保障,可以有效的预防和解决信用风险,提高企业信誉度。例如,商品售卖出去,要进行科学有效的跟踪,了解客户用后体验,对客户使用产品情况进行追踪式分析,开展科学合理的资产评估,不断发展潜在用户体验,通过客户的反馈信息进行综合性分析,提高客户满意度,提高商家的信用。 3.4确定异常事件 在商业领域中,确定异常事件具有十分重要的商业价值。在企业经营时间里,经常会有异常事件发生,例如话费拖欠、客户流失、信用卡欺诈等,通过数据挖掘技术中的异常点分析可以十分准确快速地发现异常点,使企业及