常微分方程的数值解法2010.ppt
yy****24
亲,该文档总共29页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
常微分方程的数值解法2010.ppt
对一阶常微分方程的初值问题,其一般形式是(1)在下面的讨论中,假定f(x,y)连续,且关于y满足李普希兹(Lipschitz)条件,即存在常数L,使得则初值问题(1)的解必定存在且唯一。常微分方程的数值解法所谓数值解法,就是要求问题(1)的解在若干点:处的近似值yi(i=0,1,2…n)的方法,yi称为问题(1)的数值解。相邻两个节点的间距称为步长,步长可以相等,也可以不等。本章总是假定hn为定长,称为定步长,这时节点可表示为数值解法需要把连续性的问题加以离散化,从而求出离散节点的数值解。一、欧拉(Eul
常微分方程数值解法.pdf
第五章常微分方程数值解/*NumericalMethodsforOrdinaryDifferentialEquations*/待求解的问题:一阶常微分方程的初值问题/*Initial-ValueProblem*/:dyf(x,y)x[a,b]dxy(a)y0解的存在唯一性(“常微分方程”理论):只要f(x,y)在[a,b]R1上连续,且关于y满足Lipschitz条件,即存在与x,y无关的常数L使|f(x,y1)f(x,y2)|L|y1y2|对任意定义在[a,b]上的y1(x)和
常微分方程数值解法.docx
常微分方程数值解法【作用】微分方程建模是数学建模的重要方法,因为许多实际问题的数学描述将导致求解微分方程的定解问题。把形形色色的实际问题化成微分方程的定解问题,大体上可以按以下几步:1.根据实际要求确定要研究的量(自变量、未知函数、必要的参数等)并确定坐标系。2.找出这些量所满足的基本规律(物理的、几何的、化学的或生物学的等等)。3.运用这些规律列出方程和定解条件。基本模型1.发射卫星为什么用三级火箭2.人口模型3.战争模型4.放射性废料的处理通常需要求出方程的解来说明实际现象,并加以检验。如果能得到解析
常微分方程的数值解法.docx
常微分方程的数值解法在自然科学的许多领域中,都会遇到常微分方程的求解问题。然而,我们知道,只有少数十分简单的微分方程能够用初等方法求得它们的解,多数情形只能利用近似方法求解。在常微分方程课中已经讲过的级数解法,逐步逼近法等就是近似解法。这些方法可以给出解的近似表达式,通常称为近似解析方法。还有一类近似方法称为数值方法,它可以给出解在一些离散点上的近似值。利用计算机解微分方程主要使用数值方法。我们考虑一阶常微分方程初值问题在区间[a,b]上的解,其中f(x,y)为x,y的已知函数,y0为给定的初始值,将上述
常微分方程数值解法.docx
i.常微分方程初值问题数值解法本章讨论常微分方程初值问题数值解法,主要是差分法。解微分方程的所谓差分法的要点如下:首先是区域的离散,即将连续的求解区域离散化成有限个网格点。其次是方程的离散,例如用差商代替微商,或者对微分方程积分使之变成积分方程,然后数值积分,或者……。最后得到网格点上的近似解所满足的一个差分方程,解之即得差分解。i.1常微分方程差分法考虑常微分方程初值问题:求函数SKIPIF1<0满足SKIPIF1<0(i.1a)SKIPIF1<0(i.1b)其中SKIPIF1<0