数学竞赛平面几何讲座5讲--第三讲点共线、线共点.doc
yy****24
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
数学竞赛平面几何讲座5讲--第三讲点共线、线共点.doc
第三讲点共线、线共点在本小节中包括点共线、线共点的一般证明方法及梅涅劳斯定理、塞瓦定理的应用。1.点共线的证明点共线的通常证明方法是:通过邻补角关系证明三点共线;证明两点的连线必过第三点;证明三点组成的三角形面积为零等。n(n≥4)点共线可转化为三点共线。例1如图,设线段AB的中点为C,以AC和CB为对角线作平行四边形AECD,BFCG。又作平行四边形CFHD,CGKE。求证:H,C,K三点共线。证连AK,DG,HB。由题意,ADECKG,知四边形AKGD是平行四边形,于是AKDG。同样可证AKHB。四边
数学竞赛平面几何讲座5讲(第3讲点共线、线共点).doc
数学竞赛平面几何讲座5讲(第3讲点共线、线共点)以下是查字典数学网为您推荐的数学竞赛平面几何讲座5讲(第3讲点共线、线共点)希望本篇文章对您学习有所帮助。数学竞赛平面几何讲座5讲(第3讲点共线、线共点)1.点共线的证明点共线的通常证明方法是:通过邻补角关系证明三点共线;证明两点的连线必过第三点;证明三点组成的三角形面积为零等。n(n4)点共线可转化为三点共线。例1如图设线段AB的中点为C以AC和CB为对角线作平行四边形AECDBFCG。又作平行四边形CFHDCGKE。求证:HCK三点
数学竞赛平面几何讲座5讲--第三讲 点共线、线共点.doc
第三讲点共线、线共点在本小节中包括点共线、线共点的一般证明方法及梅涅劳斯定理、塞瓦定理的应用。1.点共线的证明点共线的通常证明方法是:通过邻补角关系证明三点共线;证明两点的连线必过第三点;证明三点组成的三角形面积为零等。n(n≥4)点共线可转化为三点共线。例1如图,设线段AB的中点为C,以AC和CB为对角线作平行四边形AECD,BFCG。又作平行四边形CFHD,CGKE。求证:H,C,K三点共线。证连AK,DG,HB。由题意,ADECKG,知四边形AKGD是平行四边形,于是AKDG。同样可证AKHB。四边
第三讲点共线、线共点.doc
第三讲点共线、线共点在本小节中包括点共线、线共点的一般证明方法及梅涅劳斯定理、塞瓦定理的应用。1.点共线的证明点共线的通常证明方法是:通过邻补角关系证明三点共线;证明两点的连线必过第三点;证明三点组成的三角形面积为零等。n(n≥4)点共线可转化为三点共线。例1如图,设线段AB的中点为C,以AC和CB为对角线作平行四边形AECD,BFCG。又作平行四边形CFHD,CGKE。求证:H,C,K三点共线。证连AK,DG,HB。由题意,ADECKG,知四边形AKGD是平行四边形,于是AKDG。同样可证AKHB。四边
高中数学竞赛平面几何讲座第3讲__点共线、线共点[1].doc
第页共NUMPAGES10页第三讲点共线、线共点在本小节中包括点共线、线共点的一般证明方法及梅涅劳斯定理、塞瓦定理的应用。1.点共线的证明点共线的通常证明方法是:通过邻补角关系证明三点共线;证明两点的连线必过第三点;证明三点组成的三角形面积为零等。n(n≥4)点共线可转化为三点共线。例1如图,设线段AB的中点为C,以AC和CB为对角线作平行四边形AECD,BFCG。又作平行四边形CFHD,CGKE。求证:H,C,K三点共线。证连AK,DG,HB。由题意,ADECKG,知四边形AKG