预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

谈谈新课标下数学课堂教学中的点滴体会新课程改革以来,新的教学理念、新的课程标准、新的教材带来了面貌一新的课堂。从注重“教师的教”转到了“指导学生的学”,动手实践、自主探索、合作交流成为学生学习数学的重要方式。以学生为本,重视学生已有的经验和兴趣特点,激发学生的好奇心和求知欲,向学生提供充分的从事数学活动和交流的机会。促使学生在自主探索的过程中真正理解和掌握基本的数学知识技能、数学思想和方法、获得广泛的数学活动经验。转变学生的学习方式不仅是新课程改革的一大亮点,也是一线教师日常教学研究的一个重要课题。如何转变学生的学习方式使其更有利于学习数学,有利于培养学生的实践能力、创新能力,我进行了尝试,也取得了点滴收获。一、数学课堂教学让学生在“做中学”,实现快乐学习。北师大版教材特别突出在“做中学”的教育思想,“做中学”是美国著名思想家、教育家杜威提出的:“教学应从儿童的心理和生活经验出发,让孩子们在做中学。”教材中让学生在“做中学”的实例比比皆是,受它们的启发,我又结合自己的教学灵感,完善数学活动,引起学生的极大兴趣,取得了很好的教学效果。如,“丰富的图形世界”第一节课,我让学生参照教材,自己动手,用彩色卡纸、透明胶、固体胶、小剪刀等,制作各种几何体,包括长方体、正方体、圆柱体、圆锥体等,要求色泽鲜艳,结构美观,大小合适,做完在课堂上相互比较、交流,并留着以后教学视图、截面等的时候用。荷兰著名学者费赖登塔尔说过:“学习数学的唯一正确方法是再创造,即由学生自己把要学的东西自己去发现或创造出来,教师的任务是引导学生去进行各种创造工作,而不是把现成的知识灌输给学生。”经过这次制作活动,学生对几何有了直观的理解,对于底面积、侧面积和高等概念,有了深刻的理解,老师不需要再做过多的解说了。二、数学课堂中师生进行角色交换,让学生感受成功的喜悦。托尔斯泰说过:“成功的教学需要的不是强制”,学生对知识的渴求是缘于他们的好奇和内在的需要,教师的任务是用自己的智慧为学生创造表现自我的机会,激发学生的学习兴趣,让学生感受成功的喜悦。例如,绝对值a的意义是初一上2.4课时的重点,通过老师的角色去讲清|a|=a(当a>0时),|a|=0(当a=0时),|a|=-a(当a<0)有点困难,特别是|a|=-a(当a<0)就难上加难了。通过几年教学下来,这个知识点学生始终掌握得不好,怎么办?干脆把错误让给学生去“犯”,看看学生是什么反应的吧!上课的时候,讲完基本的概念和练习后,我故意放慢语速,话锋一转说:“通过刚才的练习,我想是不是可以这样归纳:|a|=a,此话一出,5秒后几个尖子生冒出来了,说:老师好象不对吧?中等生历来都是服从于老师的结论的,一听不对也想开了,差生呢也来劲了,课堂上七嘴八舌地议论开了,我提出让哪位同学上讲台,帮老师解答一下这个问题,当回小老师吧,学生开始自动请缨了,最后请了数学科代表上去讲解,而座位上的其它同学可认真多了,都用挑剔的眼光来看待这位新老师,认真得连他不小心讲错的一两个字都能发现,那可真是字字在耳,句句在心呀!学生通过先举出反例批判我的错误,得出应该和字母a的符号有关的结论,从而顺理成章地引导学生要分类,从而就能更好地理解|a|=-a(当a<0)的意义了。三、让学生融入课堂情境中,形成主动发现问题、提出问题、解决问题的习惯。学习数学的起点是培养学生以数学眼光观察、发现问题。“观察”是信息输入的通道,是思维探索的大门;“发现”是在观察的基础上进行质疑,插上联想的翅膀,产生顿悟,是创新意识的萌芽。提出问题是学习的一种基本方法,能不能提出问题,特别是能不能提出高质量的、标新立异、别出心裁的问题,对学生创新能力的培养起很大的作用。因此,在数学教学过程中,教师应该保证学生的数学活动与思考的时间和空间,让学生充分地经历探索事物的数量关系、变化规律的过程,营造师生之间和谐、轻松、民主的数学课堂气氛,增强学生学习数学的兴趣和信心。例如,七年级上册负数的教学,引入时没有直接讲“零上”与“零下”、“向东”与“向西”等具有相反意义的量,而是要求学生边思考边观察。我的做法是:首先在讲台上向左走了6步,再向右走了6步,并问:老师走了多少步?如何列式计算?若一步按0.5米,则老师走了多少米?学生能较快地列出式子:6+6=12、0.5×6+0.5×6=6,“但老师却仍在原地上,为什么?”通过一系列的问题情境,让学生顿然觉得知识存在着缺陷,无法解决,从无意转到有意注意之中。接着老师向学生提出计算“5-3=?”,“3-5=?”的问题。这样的问题对学生来说既自然又具有很强的吸引力,同时让学生发现所学过的知识无法解决此类问题。学生:不能减。老师:欠多少才能减呢?学生:欠2!老师在学生发现“欠2”之际,点拨学生采用“-2”来表示,并向学生阐述负数的定义。学生在感悟知识的形成过程