初中数学《最值问题》典型例题.doc
慧娇****文章
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
初中数学最值问题典型例题.pdf
初中数学最值问题典型例题--考查知识点:1、“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。(2、代数计算最值问题3、二次函数中最值问题)问题原型:饮马问题造桥选址问题(完全平方公式配方求多项式取值二次函数顶点)出题背景变式:角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。解题总思路:找点关于线的对称点实现“折”转“直”几何基本模型:BA条件:如下左图,A、B是直线l同旁的两个定点.l问题:在直线l上确定一点P,使PAPB的值最小.P方法:作点A关于直线l的对称点A
初中数学《最值问题》典型例题.pdf
--初中数学《最值问题》典型例题一、解决几何最值问题的通常思路两点之间线段最短;直线外一点与直线上所有点的连线段中,垂线段最短;三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段.几何最值问题中的基本模型举例BBAAP图形AlPlMNl轴B对原理两点之间线段最短两点之间线段最短三角形三边关系称A,B为定点,l为定直线,A,B为定点
初中数学《最值问题》典型例题.doc
初中数学《最值问题》典型例题一、解决几何最值问题的通常思路两点之间线段最短;直线外一点与直线上所有点的连线段中,垂线段最短;三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段.几何最值问题中的基本模型举例轴对称最值图形原理两点之间线段最短两点之间线段最短三角形三边关系特征A,B为定点,l为定直线,P为直线l上的一个动点,求AP+B
初中数学最值问题典型例题.pdf
初中数学最值问题典型例题--考查知识点:1、“两点之间线段最短”“垂线段最短”“点关于线对称”“线段的平移”。(2、代数计算最值问题3、二次函数中最值问题)问题原型:饮马问题造桥选址问题(完全平方公式配方求多项式取值二次函数顶点)出题背景变式:角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。解题总思路:找点关
初中数学《最值问题》典型例题.doc
PAGE\*MERGEFORMAT7初中数学《最值问题》典型例题一、解决几何最值问题的通常思路两点之间线段最短;直线外一点与直线上所有点的连线段中,垂线段最短;三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段.几何最值问题中的基本模型举例轴对称最值图形原理两点之间线段最短两点之间线段最短三角形三边关系特征A,B为定点,l为