预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

考试的重点内容与要求考试的范围是现用教材:工程数学—《概率统计简明教程》(同济大学应用数学系主编)第一、二、三、四、六、七、八、九、十章。以下按章次明确考试的重点与要求。第一章随机事件1.了解随机现象与随机试验,了解样本空间的概念。2.理解随机事件的概念,掌握事件之间的关系与运算。第二章事件的概率1.了解事件频率的概念,了解概率的统计定义。2.熟悉关于排列与组合的基本知识,掌握求排列数与组合数的公式。3.了解概率的古典定义,会计算简单的古典概率。4.了解概率的公理化定义,掌握概率的基本性质,并会解决比较简单的问题。第三章条件概率与事件的独立性1.了解条件概率的概念、概率的乘法定理与全概率公式,并会解决比较简单的应用问题。2.理解事件的独立性概念,了解伯努利(Bernoulli)概型和二项概率的计算方法。第四章随机变量及其分布1.理解随机变量的概念,了解分布函数的概念和性质,会计算与随机变量相联系的事件的概率。2.理解离散型随机变量及分布律的概念,掌握0-1分布、二项分布,了解泊松(Poisson)分布。3.理解连续型随机变量及其概率密度的概念。掌握正态分布,均匀分布,了解指数分布。第六章随机变量的函数及其分布掌握求简单随机变量函数的概率分布(重点是一维随机变量的函数及其分布)。第七章随机变量的数字特征1.理解数学期望与方差的概念,掌握它们的性质与计算。2.掌握二项分布、正态分布、泊松分布等的数学期望与方差。第八、九、十章1、了解统计量定义,掌握常用统计量的计算;理解参数点估计的概念,掌握用矩估计法构造参数的估计量。2、掌握用最大似然估计法构造参数的估计量,了解估计量的优良性评判准则。上述列出的各章内容与要求是本次统考的重点内容和应当达到的合格要求。当中对所列内容按教学要求的不同,分为两个层次。属较高要求,应使考生深入领会和掌握,并能熟练应用。其中,概念、理论用“理解”一词表述,方法、运算用“掌握”一词表述。另一个层次,也是必不可少的,只是在教学要求上低于前者。其中,概念、理论用“了解”一词表述,方法、运算用“会”或“知道”表述。但切不可把后者理解成考试不考;考生应结合课本的例题与教师布置的习题抓好落实,既要弄清概念、又要掌握运算规律、总结解题方法,同时还要注意各章知识的区别与联系。通过做题熟练内容,加深理解。提高综合运用知识分析和解决问题的能力。1考试的形式、试卷结构1.考试形式为闭卷、笔试。满分100分,考试时间为120分钟。2.试卷内容比例:第一、二、三章约占27%,第四章约占29%,第六章约占14%,第七章约占16%,第八、九、十章约占14%。3.试卷题型比例:填空题占15%,选择题占15%,计算题占49%,综合题占21%.题型示例与答案一、填空题(本大题共5小题,每小题3分,共15分。)1.在随机事件A,B,C中至多有一个发生的事件可表示为_________________;2.设随机事件A与B互斥,则P(AB)等于___________;3.设随机变量X的数学期望E(X)=a,则E(2X+5)等于______________________;4.设随机变量X的方差D(X)=b,则D(2X+5)等于______________________;5.设随机变量X服从正态分布N(,2),则其密度函数f(x)=_________________。二、单选题(本大题共5小题,每小题3分,共15分。)1.A与B是两个随机事件,若AB,则A与B关系是()。(A)对立;(B)独立;(C)互斥;(D)相容2.进行一系列独立的试验,每次试验成功的概率为p,则在成功2次之前已经失败3次的概率为:A.4p2(1p)3B.4p(1p)3C.10p2(1p)3D.p2(1p)33.设F(x)是随机变量X的分布函数,则F(x)具有性质()。(A)limF(x)1,(B)limF(x)1,(C)limF(x)0,(D)limF(x).xxxx4.设随机变量X服从分布N(,2),其数学期望和标准差分别是()。(A),;(B),2;(C);(D),5.设ˆ是总体参数的无偏估计量,则有()。(A)D(ˆ);(B)E(ˆ);(C)ˆ;(D)D(ˆ)2三、计算题(本大题共7小题,每小题7分,共49分。要求解题有过程)1.设两事件A与B互斥,且PA0.3,PAB0.8,求PB。2.袋内装有4个白球,5个黑球,今从中任取两个球,求两个球均为白球的概率;2Cx,0x1;3.设随机变量X的密度函数为fx,求参数C和概率PX0.5。0,其它.4.设X的分布律为X-1012概率0.20.30.20.3求随机变量X的数学期望E