

一种基于注意力机制与多尺度特征融合的植物图像分割方法.pdf
宛菡****魔王
亲,该文档总共12页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
一种基于注意力机制与多尺度特征融合的植物图像分割方法.pdf
本发明公开了一种基于注意力机制与多尺度特征融合的植物图像分割方法,包括划分训练集、验证集和测试集,并进行数据处理;提取多尺度特征,包括深层特征和浅层特征;调整深层特征的通道权重,并对深层特征图进行上采样处理,得到上采样引导后的深层特征图;调整浅层特征的空间分布权重,得到调整空间分布权重后的浅层特征图;将上采样引导后的深层特征图和调整空间分布权重后的浅层特征图进行多尺度融合,得到多尺度融合后的特征图;模型训练,得到训练好的植物图像分割模型;最后对模型进行验证和测试。本发明能够较好的解决复杂背景下植物图像分割
基于多尺度特征和注意力机制的航空图像分割.docx
基于多尺度特征和注意力机制的航空图像分割摘要:航空图像分割是计算机视觉领域的一个重要任务,具有广泛的应用价值。然而,由于航空图像的特殊性,包含大面积的地物和复杂的纹理等因素,航空图像的分割任务具有一定的挑战性。为了解决这个问题,本文提出了一种基于多尺度特征和注意力机制的航空图像分割方法。首先,本文使用多尺度特征来提取航空图像的更全面的信息。在传统的航空图像分割方法中,通常只使用固定大小的滑动窗口来提取特征。然而,由于航空图像的尺度巨大,只使用固定大小的滑动窗口往往不能捕捉到完整的目标信息。因此,本文采用了
基于注意力机制指导特征融合的图像语义分割方法.pdf
本发明公开一种基于注意力机制指导特征融合的图像语义分割方法,包括如下步骤:(10)编码器基础网络构建:使用改进后的ResNet‑101生成一系列由高分辨率低语义到低分辨率高语义变化的特征;(20)解码器特征融合模块构建:采用基于三层卷积操作的金字塔结构模块,提取强一致性约束的高层语义,再向低层阶段特征逐层加权融合,得到初步分割热图;(30)辅助损失函数构建:向解码阶段的每个融合输出追加辅助监督,再与热图上采样后的主监督损失叠加,强化模型的分层训练,得到语义分割图。本发明的基于注意力机制指导特征融合的图像语
一种基于注意力机制的多尺度特征融合行人检测方法.pdf
本发明公开了一种基于注意力机制的多尺度特征融合行人检测方法,包括:输入训练集和验证集,提取行人特征并生成特征图;输入网络模型,训练模型;是否达到指定批次,若是则输出模型并验证模型。本发明的基于注意力机制的多尺度特征融合行人检测方法将FCOS算法应用到行人检测中,在其基础上采用了密集金字塔结构,将顶层特征与底层特征进行融合,这样能够使融合后的特征具有底层的空间信息和顶层特征的细节信息,能够更好的识别出行人目标。其次,在融合后的特征融入空间和通道注意力,使其能够更精准的定位到行人目标。
基于注意力机制与多尺度特征融合的行人特征提取方法.pdf
本发明基于注意力机制与多尺度特征融合的行人特征提取方法属于计算机视觉、机器视觉和深度学习技术领域;该方法依次执行以下步骤:构建自上而下渐进式交互模块;构建M?Convolution注意力机制模块;设置评价指标;评价行人特征提取方法的有效性;本发明在数据集上通过Resnet50+FPN、Resnet50+FPN+M?convolution、Resnet50+MPN三种行人特征提取方法进行训练,经过对比mAP、Rank?1和Rank?5三个衡量指标,本发明构建的两个模块在三个指标上的表现均有不同程度的提高,验