一种单通道的脑电信号中肌电伪迹的消除方法.pdf
小琛****82
亲,该文档总共13页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
一种单通道的脑电信号中肌电伪迹的消除方法.pdf
本发明公开了一种单通道脑电信号中肌电伪迹的消除方法,其特征包括:1,首先用奇异谱分析对单通道脑电信号进行分解,得到多维的信号分量矩阵;2,使用独立向量分析对信号分量矩阵进行盲源分离,得到多个独立分量;3,设置自相关系数阈值,检测出含肌电伪迹的独立分量并置零;4,将部分置零后的独立分量进行盲源分离逆变换,重建得到干净的单通道脑电信号。本发明能实现单通道脑电信号中肌电伪迹的去除,对于脑电信号的后续分析有着重要意义。
单通道脑电信号中肌电伪迹的自动去除方法.pdf
本发明公开了一种用于单通道脑电信号中肌电伪迹的去除方法,将脑电信号通过SSA分解得到P个信号分量;将P个信号分量按行拼接成一个P维数据矩阵;将P维数据矩阵进行时间延迟处理得到若干个数据矩阵;利用MCCA对若干个数据矩阵进行盲源分离,得到源估计矩阵S和混合矩阵A;识别源估计矩阵中与肌电伪迹相关的源;去除源估计矩阵中的肌电伪迹,将识别为肌电伪迹的源置零,得到消除肌电伪迹后的源估计矩阵S’,并通过重构得到去除肌电伪迹后的多通道脑电信号X′=A*S′;将多通道脑电信号X’的各行求和,即可最终得到去除了肌电伪迹后的
一种少数通道的脑电信号中肌电伪迹的消除方法.pdf
本发明公开了一种少数通道的脑电信号中肌电伪迹的消除方法,包括:1、首先用多元经验模态分解对少数通道脑电信号同时进行分解,得到少数通道的本征模态分量矩阵;2、对少数通道的本征模态分量矩阵用独立变量分析进行盲信号分离;3、用自相关系数判定含肌电伪迹的分量,置零肌电伪迹分量,通过独立变量分析逆变换得到不含肌电伪迹的分量矩阵;4、根据原本征模态分量矩阵的排列顺序,将对应通道的本征模态分量依次相加,最终得到干净的脑电信号。本发明能完全去除肌电伪迹对脑电信号的影响,从而提高脑电信号分析的准确性。
一种状态相关的动态脑电信号中肌电伪迹的消除方法.pdf
本发明公开了一种状态相关的动态脑电信号中肌电伪迹的消除方法,其步骤包括:1、首先将收集到的脑电观测信号通过延时构造两个数据集;2、利用本发明提出的隐马尔科夫独立向量分析法进行动态的联合盲源分离,得到每个数据集在各个状态下的源信号矩阵和解混矩阵;3、选择脑电信号相对应的源信号矩阵和解混矩阵;4、依照自相关系数排序源信号矩阵中各个独立源成分,选择肌电噪声相关的独立源成分置零;5、盲源分离逆变换得到消除噪声后的干净脑电信号。本发明能在实际的动态环境中去除肌电噪声对脑电信号的影响,同时尽可能地保留脑电活动的信息不
一种基于单通道的脑电信号中肌电噪声消除方法.pdf
本发明公开了一种基于单通道的脑电信号中肌电噪声消除方法,其特征是:首先,用总体平均经验模态分解将单通道脑电信号分解为若干本征模式分量,然后,用多集典型相关分析对本征模式分量进行盲信号分离,得到若干典型变量,最后,判定自相关系数低于一定阈值的典型变量为肌电噪声,剔除肌电噪声变量重构得到消除肌电噪声的脑电信号。本发明从单通道这个全新的角度有效地解决了脑电信号中肌电噪声消除的难题,相比传统的基于多通道盲信号分离技术,能够更佳地消除肌电噪声;本发明不仅适用于便携穿戴式的单通道或少数通道脑电设备,还适用于临床诊断和