预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共12页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号CN106625163A(43)申请公布日2017.05.10(21)申请号201710114597.6(22)申请日2017.02.28(71)申请人梅木精密工业(珠海)有限公司地址519030广东省珠海市南屏科技园屏东六路三号21栋一楼及二楼1区(72)发明人杨宏伟(74)专利代理机构广州嘉权专利商标事务所有限公司44205代理人俞梁清(51)Int.Cl.B24B27/00(2006.01)B24B41/00(2006.01)B24B49/02(2006.01)B24B53/06(2006.01)权利要求书1页说明书5页附图5页(54)发明名称数控内螺纹机床接触式自动对位装置和方法(57)摘要本发明提供数控内螺纹机床接触式自动对位装置,包括X轴移动机构、Z轴移动机构、具有工件夹持轴机构的C旋转轴机构、A旋转轴机构、M多工位切换机构和数控系统,M多工位切换机构包括多工位夹头、夹头切换机构和磨削主轴,磨削主轴包括电动主轴和锁紧夹头,C旋转轴和A旋转轴中心基准位于同一水平面上,磨削砂轮切换到磨削主轴上时磨削砂轮的几何中心处于A旋转轴的中心线上。本发明还提供数控内螺纹机床接触式自动对位方法。本发明使得数控内螺纹机床自动对位,无需人为操作,对位精准、快捷和安全,操作简单、可靠和快捷,装置整体先进,机构简单,测量头和砂轮切换精准效率高。特别是解决了小尺寸内螺纹机床的自动对位的技术难题。CN106625163ACN106625163A权利要求书1/1页1.一种数控内螺纹机床接触式自动对位装置,包括X轴移动机构、Z轴移动机构、C旋转轴机构、A旋转轴机构、M多工位切换机构和数控系统,所述C旋转轴机构包括工件夹持轴机构,其特征在于:所述A旋转轴机构连接到所述X轴移动机构,所述C旋转轴机构连接到所述Z轴移动机构,所述M多工位切换机构连接到A旋转轴机构;所述M多工位切换机构包括多工位夹头、夹头切换机构和磨削主轴,所述多工位夹头通过所述夹头切换机构切换到所述磨削主轴的位置;所述磨削主轴包括电动主轴和用于锁紧所述多工位夹头的锁紧夹头。2.根据权利要求1所述的数控内螺纹机床接触式自动对位装置,其特征在于:所述多工位夹头的尺寸和形状使得切换时所述磨削主轴中心基准不变。3.根据权利要求1所述的数控内螺纹机床接触式自动对位装置,其特征在于:C旋转轴和A旋转轴中心基准位于同一水平面上,磨削砂轮切换到所述磨削主轴上时,所述磨削砂轮的几何中心处于A旋转轴的中心线上。4.根据权利要求1至3中任一项所述的数控内螺纹机床接触式自动对位装置,其特征在于:所述数控内螺纹机床接触式自动对位装置还包括砂轮修整机构,所述砂轮修整机构连接到所述Z轴移动机构。5.根据权利要求1至3中任一项所述的数控内螺纹机床接触式自动对位装置,其特征在于:所述数控内螺纹机床接触式自动对位装置还包括校准传感器机构,所述校准传感器机构连接到所述Z轴移动机构。6.根据权利要求1至3中任一项所述的数控内螺纹机床接触式自动对位装置,其特征在于:所述X轴移动机构和所述Z轴移动机构分别设置有光栅尺。7.一种用于根据权利要求1所述的数控内螺纹机床接触式自动对位装置的数控内螺纹机床接触式自动对位方法,包括以下步骤:测量头工位上的测量头测量工件尺寸,获得磨削起点位置坐标;所述磨削主轴移动到安全位置并切换到磨具工位,根据所述磨削起点位置坐标调整所述磨具工位上的磨具,对准工件磨削起点,完成磨具的自动对位过程;其特征在于:所述测量头工位切换到所述电动主轴上时,C旋转轴和A旋转轴中心基准位于同一水平面上。8.根据权利要求7所述的数控内螺纹机床接触式自动对位方法,其特征在于:所述测量头测量工件尺寸时,触碰被加工工件基准面自动计算砂轮Z轴原点位置,进入内螺纹,测量两个相连螺牙槽顶端,发出触发信号,通过所述数控系统获得磨削起点位置坐标。2CN106625163A说明书1/5页数控内螺纹机床接触式自动对位装置和方法技术领域[0001]本发明涉及数控机床领域,特别是涉及一种数控内螺纹机床接触式自动对位装置和方法。背景技术[0002]目前,数控内螺纹机床对位是行业公认最难解决的问题。特别是尺寸小的内螺纹,满足不了现有的非接触传感器的测量范围要求。数控内螺纹机床对位存在以下问题:内螺纹位于轴内,肉眼看不到内面螺纹实际情况,导致对位不精确,磨削加工困难,砂轮容易崩碎。[0003]传统内螺纹对位通过靠经验丰富的工人依靠感觉手动方式低速进给,通过磨削产生的火花进行对位,加工出来的螺纹难以满足加工精度,工件不统一且生产效率低。现有技术采用非接触式传感器放入螺纹孔内部,通过信号采集分析,但是这种方式只适用于比传感器外形尺寸大的内螺纹孔,因此磨削范围受到限定,并且磨削时的油雾环