预览加载中,请您耐心等待几秒...
1/6
2/6
3/6
4/6
5/6
6/6

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

黄家中学高2007级高三数学10月月考试卷数学(文科)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷至,第Ⅱ卷至,全卷满分150分,考试时间:2006年10月26日第Ⅰ卷(选择题满分60分)一.选择题:每小题5分,共60分1.设,则A.B.C.D.2.满足的集合的个数为A.B.C.D.3.在一次歌手大赛上,七位评委为某歌手打出的分数如下:,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为A.B.C.D.4.曲线在点处的切线方程为A.B.C.D.5.方程有两个同号且不相等的实根的充分不必要条件是A.B.C.D.6.若指数函数的部分对应值如上表,则不等式的解集为A.B.C.D.7.函数的反函数是A.B.C.D.8.已知是第三象限的角,且,则A.B.C.D.9.函数的定义域为A.B.C.D.10.下列各式中正确的是A.B.C.D.11.函数与函数的图象如右图所示,则的大致图象为()12.定义两种运算:,则函数为A.B.C.D.二.填空题:每小题4分,共16分13.若函数,则的取值范围为______________14.函数的值域为______________15.在①②③④这四个函数中,当时,使恒成立的函数的个数为__________个16.给出下列六种图象变换方法:①图象上所有的纵坐标不变,横坐标缩短到原来的;②图象上所有的点的纵坐标不变,横坐标伸长为原来的倍;③图象向右平移个单位;④图象向左平移个单位;⑤图象向右平移个单位;⑥图象向左平移个单位;请用上述的两种变换,将函数的图象变换到函数的图象,那么这两种变换正确的标号是________(要求按变换先后顺序填上一种你认为正确的标号即可)第Ⅱ卷(非选择题共90分)一.选择题:本大共12小题,每小题5分,在每小题的四个选项中只有一个是正确的。三.解答题:要求写出解答过程;17~20题每小题12分,21~22题每小题13分,共74分。17.已知函数在上是减函数,求的取值范围。18.解下列不等式:19.已知函数,求使为正值的的集合。20.已知函数(1)求的定义域;(2)证明在区间是单调递增函数。21.已知为实数,(1)求导数(2)若,求在上的最大值和最小值(3)若在和上都是递增的,求的取值范围。22.定义在上的函数满足(1)对任意都有;(2)时,求证:(1)在为奇函数;(2)在上为单调递减函数;(3)[参考答案]一.选择题:本大共12小题,每小题5分,在每小题的四个选项中只有一个是正确的。题号123456789101112答案CBDBBCDDACAD二.填空题:本大题共4个小题,每小题4分,共16分,把答案直接填在下面的横线上。13.14.15.16.②⑥或④②三.解答题:要求写出解答过程;17~20题每小题12分,21~22题每小题13分,共74分。17.已知函数在上是减函数,求的取值范围。解:∵∴又∵在上是减函数∴解得:故:的取值范围为18.解下列不等式:解:原不等式可化为:即∴故:原不等式的解集为:19.已知函数,求使为正值的的集合。解1:∵∴∴又∵∴故:使为正值的的集合为解2:∵∴即:①或②由①得:由②得:故:使为正值的的集合为20.已知函数(1)求的定义域;(2)证明在区间是单调递增函数。(1)解:由得又∵∴的定义域为(2)证明1:任取,且,则:∵∵∴∴即又∵单减∴即故:在区间是单调递增函数。证明2:令,则∵∵∴∴在单减又∵单减∴在单增。21.(04年浙江)已知为实数,(1)求导数(2)若,求在上的最大值和最小值(3)若在和上都是递增的,求的取值范围。解:(1)由原式得∴(2)由得,此时有.由得或x=-1,又所以f(x)在上的最大值为最小值为(3)解法一:的图象为开口向上且过点的抛物线,由条件得即∴所以a的取值范围为解法二:令即由求根公式得:所以在和上非负.由题意可知,当或时,,从而,即解不等式组得:∴a的取值范围是22.定义在上的函数满足(1)对任意都有;(2)时,求证:(1)在为奇函数;(2)在上为单调递减函数;(3)解:(1)∵对任意都有∴令得∴令得∴即∴在为奇函数;(2)任取,且,则有,,,,又∴又∵时,∴又∵∴即∴在上为单调递减函数;(3)∵∴∴∵欲证,只需证:即只需证:,,又∵且在上为单调递减函数∴成立故:成立。