预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共21页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

四川省宜宾市叙州区第二中学2020届高三数学一诊模拟试题理(含解析)第I卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每个小题所给出的四个选项中,只有一项是符合题目要求的,把正确选项的代号填在答题卡的指定位置.)1.已知全集为,集合,,则元素个数为A.1B.2C.3D.4【答案】B【解析】【分析】求出集合,利用交集的定义求出,即可得到元素个数【详解】由,可得:,所以,即元素个数为2,故答案选B【点睛】本题考查分式不等式的解法以及集合交集的定义,属于基础题.2.设,则()A.0B.1C.D.3【答案】B【解析】【分析】先将分母实数化,然后直接求其模.【详解】【点睛】本题考查复数的除法及模的运算,是一道基础题.3.设,是两个不同的平面,是直线且.“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B【解析】试题分析:,得不到,因为可能相交,只要和的交线平行即可得到;,,∴和没有公共点,∴,即能得到;∴“”是“”的必要不充分条件.故选B.考点:必要条件、充分条件与充要条件的判断.【方法点晴】考查线面平行的定义,线面平行的判定定理,面面平行的定义,面面平行的判定定理,以及充分条件、必要条件,及必要不充分条件的概念,属于基础题;并得不到,根据面面平行的判定定理,只有内的两相交直线都平行于,而,并且,显然能得到,这样即可找出正确选项.4.已知函数,则()A.B.C.D.5【答案】A【解析】【分析】先判断自变量的范围是分段函数的某一段,再代入相应的解析式中求函数的值.【详解】,,,故选A.【点睛】本题考查分段函数和对数运算,属于基础题.5.设,,,则()A.B.C.D.【答案】B【解析】【分析】运用中介值“”,和指数的同指或同底时的大小比较得解.【详解】,,故选B.【点睛】本题考查指数、对数的大小比较,属于中档题.6.下图可能是下列哪个函数的图像()A.B.C.D.【答案】C【解析】【分析】可考虑用排除法,从函数的定义域和特殊点的函数的正负着手.【详解】由图像可知,在上单调递增,故可排除D;当时,A、选项中的选项中的故选C.【点睛】本题考查函数的定义域和特殊点的函数值辨别图像,属于基础题.7.已知曲线,,则下面结论正确的是()A.把曲线向右平移个长度单位得到曲线B.把曲线向左平移个长度单位得到曲线C.把曲线向左平移个长度单位得到曲线D.把曲线向右平移个长度单位得到曲线【答案】D【解析】【分析】将通过合一公式化为向右平移就可以得到.【详解】,把曲线向右平移个长度单位得即为,故选D.【点睛】本题考查函数的平移变换,是一道基础题.8.过三点,,的圆截直线所得弦长的最小值等于()A.B.C.D.【答案】B【解析】【分析】因为圆心在弦AC的中垂线上,所以设圆心P坐标为(a,-2),再利用,求得,确定圆的方程.又直线过定点Q,则可以得到弦长最短时圆心与直线的定点Q与弦垂直,然后利用勾股定理可求得弦长.【详解】解:设圆心坐标P为(a,-2),则r2=,解得a=1,所以P(1,-2).又直线过定点Q(-2,0),当直线PQ与弦垂直时,弦长最短,根据圆内特征三角形可知弦长∴直线被圆截得的弦长为.故选B.9.已知椭圆:()的左,右焦点分别为,,以为圆心的圆过椭圆的中心,且与在第一象限交于点,若直线恰好与圆相切于点,则的离心率为()A.B.C.D.【答案】A【解析】【分析】利用已知条件以及椭圆的性质列出关系式,求解椭圆的离心率即可.【详解】椭圆:()的左,右焦点分别为,,以为圆心的圆过椭圆的中心,且与在第一象限交于点,若直线恰好与圆相切于点,可得,可得所以解得故选A【点睛】本题考查利用椭圆的定义以及性质求离心率,属于中档题.10.2019年5月22日具有“国家战略”意义的“长三角一体化”会议在芜湖举行;长三角城市群包括:上海市以及江苏省、浙江省、安徽省三省部分城市,简称“三省一市”.现有4名高三学生准备高考后到上海市、江苏省、浙江省、安徽省四个地方旅游,假设每名同学均从这四个地方中任意选取一个去旅游,则恰有一个地方未被选中的概率为()A.B.C.D.【答案】B【解析】【分析】根据排列组合的知识分别求解出恰有一个地方未被选中的情况和所有情况,利用古典概型计算可得结果.【详解】名同学去旅游的所有情况有:种恰有一个地方未被选中共有:种情况恰有一个地方未被选中的概率:本题正确选项:【点睛】本题考查古典概型计算概率的问题、排列组合中的分组分配问题;关键是能够利用排列组合的知识准确求解出恰有一个地方未被选中的情况种数;易错点是忽略了分组分配中的平均分配问题.11.已知的最大值为,若存在实数、,使得对任意实数总有成立,则的最小值为()A.B.C.D.【答案】C【解析】【分析】先化简,得,根据题意即