预览加载中,请您耐心等待几秒...
1/9
2/9
3/9
4/9
5/9
6/9
7/9
8/9
9/9

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

江苏省南京市2006年高三数学调研测试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试用时120分钟.第Ⅰ卷(选择题共60分)选择题:本大题共12小题;每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.已知集合A={0,1,2},B={x|x=2a,a∈A},则集合A∩B=A.{0}B.{0,1}C.{1,2}D.{0,2}2.已知向量a=(1,0),b=(1,1),c=(-1,0),若c=λa+μb(λ,μ∈R),则λ,μ的值分别为A.1,0B.1,1C.0,1D.-1,03.如果a,b,c成等比数列,那么关于x的方程ax2+bx+c=0()A.一定有两个不相同的实数根B.一定有两个相同的实数根C.一定没有实数根D.以上三种情况均可出现4.“b=2”是“直线y=x+b与圆x2+y2=2相切”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件5.已知f(x)=a-是定义在R上的奇函数,则f-1()的值是A.2B.C.D.6.如图,表示阴影区域的不等式组是A.B.C.D.7.已知函数f(x)=cos2(+x)-cos2(-x),则f(A.B.-C.D.-8.若双曲线的焦点到渐近线的距离等于实轴长,则该双曲线的离心率e=___________.A.B.C.D.9.用清水漂洗衣服,假定每次能洗去污垢的.若要使存留的污垢不超过原来的1%,则至少要漂洗TxA.3次B.4次C.5次D.5次以上10.设0<x<y<a<1,则有A.loga(xy)<0B.0<loga(xy)<1C.1<loga(xy)<2D.loga(xy)>211.已知m,n是两条不重合的直线,α,β,γ是三个两两不重合的平面.给出下列命题:①若m⊥α,m⊥β,则α∥β;②若α⊥γ,β⊥γ,则α∥β;③若m⊥α,n⊥α,则m∥n;④若m⊥α,β⊥α,则m∥β.其中真命题是:A.①和④B.①和③C.②和③D.②和④12.若实数x,y,z满足x2+y2+z2=1,则xy+yz+zx的取值范围是A.[-1,1]B.[-,1]C.[-1,]D.[-,]第Ⅱ卷(非选择题共90分)二、填空题:本大题共6小题;每小题4分,共24分.13.函数f(x)=的定义域是__________________.14.若|a|=1,|b|=2,c=a-b,且c⊥a,则向量a与b的夹角为________________.15.若椭圆到右焦点F(1,0)的距离为,则点P到x轴的距离为___________.16.不等式x2-|x|>0的解集为____________________.17.在△ABC中,∠A=60°,BC=2,则△ABC的面积的最大值为__________________.18.已知数列{an}的首项a1=,Sn是其前n项的和,且满足Sn=n2an,则此数列的通项公式为an=___________________.三、解答题:本大题5小题,共66分,解答应写出文字说明、证明过程或演算步骤.19.(本小题满分12分)设函数f(x)=求ω的值,并画出函数y=f(x)在区间[0,π]上的图象;函数y=f(x)的图象可由函数y=sinx的图象经过怎样的变换得到?20.(本小题满分12分)已知等差数列{an}的前4项的和为10,且a2,a3,a7成等比数列.求通项公式an;设bn=,求数列{bn}的前n项的和Sn.21.(本小题满分14分)已知正四棱柱ABCD—A1B1C1D1中,AB=2,AA1=4,E为BC的中点,F为直线CC1上的动点,设当λ=3时,求EF与平面ABCD所成的角;当λ=1时,求二面角F-DE-C的大小(用反三角函数表示);当λ为何值时,有BD1⊥EF?22.(本小题满分14分)已知直线x+2y+m=0(m∈R)与抛物线C:y2=x相交于不同的两点A,B.求实数m的取值范围;在抛物线C上是否存在一个定点P,对(1)中任意的m的值,都有直线PA与PB的斜率互为相反数?若存在,求出点P的坐标;若不存在,试说明理由.23.(本小题满分14分)已知函数f(x)=求f(x)的值域;设函数g(x)=ax-2,x∈[-2,2].若对于任意x1∈[-2,2],总存在x0∈[-2,2],使得g(x0)=f(x1)成立,求实数a的取值范围.参考答案1.D2.D3.C4.A5.A6.D7.B8.C9.B10.D11.B12.B13.[1,+∞)14.15.16.(-∞,-1)∪(1,+∞)17.18.an=19.(1)函数可化为f(x)=sin(ωx+).∵T=π,∴∴f(x)=sin(2x+).x0πy10-10图象略.(2)方法一:将y=sinx(x∈R)的图象上所有的点向左平行移动个单位长度,得到函数y=sin(x+)(