预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共14页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第一讲概率知识点1、随机事件重点:理解随机事件、不可能事件、必然事件。难点:正确判断随机事件、不可能事件、必然事件。在一定条件下,可能发生也可能不发生的事件:(1)不可能事件:是指事情完全没有机会发生,或者说是永远不会发生,一定不会发生的事情。(2)可能事件:是指事情有可能发生,包括发生的情况很少,极少以及发生的可能性很大,极大等情况。(3)必然事件:指事情每次都发生。例:指出下列事件是必然事件,不可能事件,还是随机事件?(1)某地明年1月1日刮西北风;(2)当x是实数时,;(3)手电筒的电池没电,灯泡发亮;(4)一个电影院某天的上座率超过50%。(5)从分别标有1,2,3,4,5,6,7,8,9,10的10张号签中任取一张,得到4号签。解题思路:理解随机事件、不可能事件、必然事件,(1)(4)(5)是随机事件,(2)是必然事件,(3)是不可能事件。练习1.下列事件中,属于随机事件的是().A.物体在重力的作用下自由下落B.x为实数,x2<0C.在某一天内电话收到呼叫次数为0D.今天下雨或不下雨2.下列事件中,属于必然事件的是().A.掷一枚硬币出现正面B.掷一枚硬币出现反面C.掷一枚硬币,或者出现正面,或者出现反面D.掷一枚硬币,出现正面和反面答案:1、C2、C知识点2、概率重点:概率的定义及概率计算方法。难点:求概率。概率的定义:一般地,如果在一次实验中,有n中可能结果,并且它们发生的可能性相等,事件A包含其中m种结果,那么事件A发生的概率P(A)=概率的求法:用列举法用频率来估计:事件A的概率:一般地,在大量重复进行同一试验时,事件A发生的频率,总是接近于某个常数,在它附近摆动。这个常数叫做事件A的概率,记作P(A)。说明:①求一个事件概率的基本方法是通过大量的重复实验②当频率在某个常数附近摆动时,这个常数叫做事件A的概率③概率是频率的稳定值,而频率是概率的近似值。④概率反映了随机事件发生的可能性的大小。⑤必然事件的概率是1,不可能事件的概率是0,因此0≤P(A)≤1例1.下面是两个可以自由转动的转盘,每个转盘被分成了三个相等的扇形,小明和小亮用它们做配紫色(红色与蓝色能配成紫色)游戏,你认为配成紫色与配不成紫色的概率相同吗?解题思路:三种方法求概率法一:列表格因为红蓝蓝红(红,红)(红,蓝)(红,蓝)红(红,红)(红,蓝)(红,蓝)蓝(蓝,红)(蓝,蓝)(蓝,蓝)所以P(配成紫色)=5/9,P(配不成紫色)=4/9法二:列举法:因为转动转盘共出现九种结果,即:(红,红),(红,蓝),(红,蓝),(红,红),(红,蓝),(红,蓝),(蓝,红),(蓝,蓝)(蓝,蓝),而其中配成紫色的有五种结果,所以P(配成紫色)=5/9,P(配不成紫色)=4/9法三:画树状图:(红,红)(红,蓝)(红,蓝)(红,红)(红,蓝)(红,蓝)(蓝,红)(蓝,蓝)(蓝,蓝)所以P(配成紫色)=5/9,P(配不成紫色)=4/9。例2.集市上有一个人在设摊“摸彩”,只见他手拿一个黑色的袋子,内装大小、形状、质量完全相同的白球20只,且每一个球上都写有号码(1-20号),另外袋中还有1只红球,而且这21只球除颜色外其余完全相同。规定:每次只摸一只球。摸前交1元钱且在1—20内写一个号码,摸到红球奖5元,摸到号码数与你写的号码相同奖10元。(1)你认为该游戏对“摸彩”者有利吗?说明你的理由。(2)若一个“摸彩”者多次摸奖后,他平均每次将获利或损失多少元?解题思路:(1)P(摸到红球)=P(摸到同号球)=;故没有利;(2)每次的平均收益为(5+10)—=—<0,故每次平均损失元。例3.在研究概率的历史上,英国人蒲丰、皮尔逊就先后做过掷硬币实验,他们的实验数据如表所列实验人蒲丰皮尔逊皮尔逊投掷次数40401200024000出现正面次数2048601912012出现正面频率(1)计算表中出现正面的各个频率.(2)随机掷一枚硬币,出现正面的概率约是多少?出现反面的概率呢?解题思路:用频率来估计概率。解:(1)0.5069,0.5016,0.5005;(2)0.5,0.5.(3)反映了随机事件发生的可能性的大小.练习:12123甲乙小明的小刚用如图的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分,当所转到的数字之积为偶数时,小刚得1分,这个游戏对双方公平吗?若公平,说明理由,若不公平,如何修改规则才能使游戏对双方公平?35%30%25%20%20601001401602.小明有四把不同的钥匙,其中一把可以打开车锁。小明用计算器设计如下模似实验:“在1-4间产生一个随机数,若产生数字为1,视为开启成功。”研究“从中任取一把打开车锁”的机会的大小,实验数据如下表:⑴请将数据表补充完整。⑵画出折线图⑶估计成功开启的机会是