预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共14页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

北京市重点中学2014-2015学年高二下学期开学数学试卷(理科)一、选择题:本大题共8小题,每小题4分,共32分.1.(4分)直线x+y=2的倾斜角是()A.B.C.D.2.(4分)焦点在x轴上的椭圆的离心率是,则实数m的值是()A.4B.C.1D.3.(4分)一个空间几何体的三视图如图所示,该几何体的体积为()A.8B.C.D.64.(4分)已知圆O:x2+y2=1,直线l:3x+4y﹣3=0,则直线l被圆O所截的弦长为()A.B.1C.D.25.(4分)在空间,若a、b是不重合的直线,α、β是不重合的平面,则下列条件中可推出a⊥b的是()A.a∥α,b∥αB.a⊥α,b⊥αC.a⊂α,b⊂β,α⊥βD.α∥β,a⊥α,b⊂β6.(4分)设x,y∈R,则“x+y﹣4<0”是“x<0且y<0”的()A.充分而不必要条件B.必要而不充分条件C.即不充分也不必要条件D.充分必要条件7.(4分)已知正四面体A﹣BCD的棱长为2,点E是AD的中点,则下面四个命题中正确的是()A.∀F∈BC,EF⊥ADB.∃F∈BC,EF⊥ACC.∀F∈BC,EF≥D.∃F∈BC,EF∥AC8.(4分)已知曲线W:+|y|=1,则曲线W上的点到原点距离的取值范围是()A.B.C.D.二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中横线上.9.(5分)已知直线x﹣ay﹣1=0与直线y=ax平行,则实数a=.10.(5分)双曲线的渐近线方程为.11.(5分)已知空间向量=(0,1,1),=(x,0,1),若,的夹角为,则实数x的值为.12.(5分)已知椭圆C=1(a>b>0)的左右焦点分别为F1,F2,若等边△F1F2P的一个顶点P在椭圆C上,则椭圆C的离心率为.13.(5分)已知点,抛物线y2=2x的焦点为F,点P在抛物线上,且|AP|=|PF|,则|OP|=.三、解答题:本大题共4小题,共43分.解答应写出文字说明,证明过程或演算步骤.14.(10分)已知点A(0,2),圆O:x2+y2=1.(Ⅰ)求经过点A与圆O相切的直线方程;(Ⅱ)若点P是圆O上的动点,求的取值范围.15.(11分)已知抛物线W:y2=4x的焦点为F,直线y=2x+t与抛物线W相交于A,B两点.(Ⅰ)将|AB|表示为t的函数;(Ⅱ)若|AB|=3,求△AFB的周长.16.(12分)在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),D(0,0,2),E(0,2,1).(Ⅰ)求证:直线BE∥平面ADO;(Ⅱ)求直线OB和平面ABD所成的角;(Ⅲ)在直线BE上是否存在点P,使得直线AP与直线BD垂直?若存在,求出点P的坐标;若不存在,请说明理由.17.(10分)如图,已知y=kx(k≠0)与椭圆:+y2=1交于P,Q两点,过点P的直线PA与PQ垂直,且与椭圆C的另一个交点为4.(1)求直线PA与AQ的斜率之积;(2)若直线AQ与x轴交于点B,求证:PB与x轴垂直.北京市重点中学2014-2015学年高二下学期开学数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题4分,共32分.1.(4分)直线x+y=2的倾斜角是()A.B.C.D.考点:直线的倾斜角.专题:直线与圆.分析:直线的倾斜角与斜率之间的关系解答:解:设倾斜角为θ,θ∈[0,π).∵直线x+y﹣2=0,∴k=﹣1=tanθ,∴.故选:D.点评:本题考查了直线的倾斜角与斜率之间的关系,属于基础题.2.(4分)焦点在x轴上的椭圆的离心率是,则实数m的值是()A.4B.C.1D.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:利用椭圆的简单性质,离心率写出方程即可求出m的值.解答:解:焦点在x轴上的椭圆,可知a2=m,b2=3,c2=m﹣3,椭圆的离心率是,可得,解得m=4.故选:A.点评:本题考查椭圆的简单性质的应用,基本知识的考查.3.(4分)一个空间几何体的三视图如图所示,该几何体的体积为()A.8B.C.D.6考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:由已知中的三视图可得,该几何体为以俯视图为底面的四棱锥,求出底面面积和高,代入棱锥体积公式,可得答案.解答:解:由已知中的三视图可得,该几何体为以俯视图为底面的四棱锥,棱锥的底面面积S=2×2=4,棱锥的高h=2,故棱锥的体积V==,故选:B点评:本题考查三视图、三棱柱的体积,本试题考查了简单几何体的三视图的运用.培养同学们的空间想象能力和基本的运算能力.基础题.4.(4分)已知圆O:x2+y2=1,直线l:3x+4y﹣3=0,则直线l被圆O所截的弦长为()A.B.1C.D.2考点:直线与圆相交的性质.专题:直线与圆.分析:根据直线和圆的位置关系结合弦长公