预览加载中,请您耐心等待几秒...
1/8
2/8
3/8
4/8
5/8
6/8
7/8
8/8

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2015-2016学年邯郸市高二(上)期末数学试卷(理科)班级姓名考号一、选择题:本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一个符合题目要求的.1.如果a>b>0,那么下列不等式成立的是()A.a2>abB.ab<b2C.>D.>2.“∀x∈R,x2﹣2>0”的否定是()A.∀x∈R,x2﹣2<0B.∀x∈R,x2﹣2≤0C.∃x0∈R,x﹣2<0D.∃x0∈R,x﹣2≤03.在等差数列{an}中,a5=5,a10=15,则a15=()A.20B.25C.45D.754.在△ABC中,角A、B、C的对边分别为a、b、c,a=3,A=45°,B=60°,则b=()A.B.C.D.5.函数y=lnx+x在点(1,1)处的切线方程是()A.2x﹣y﹣1=0B.2x+y﹣1=0C.x﹣2y+1=0D.x+2y﹣1=06.“m>0”是“x2+x+m=0无实根”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.函数f(x)的定义域为R,其导函数f′(x)的图象如图,则f(x)的极值点有()SHAPE\*MERGEFORMATA.3个B.4个C.5个D.6个8.已知数列{an}是递增的等比数列,a1+a5=17,a2a4=16,则公比q=()A.﹣4B.4C.﹣2D.29.经过点(3,﹣)的双曲线﹣=1,其一条渐近线方程为y=x,该双曲线的焦距为()A.B.2C.2D.410.若函数f(x)=x4﹣ax2﹣bx﹣1在x=1处有极值,则9a+3b的最小值为()A.4B.9C.18D.8111.在正方体ABCD﹣A1B1C1D1中,直线DC1与平面A1BD所成角的余弦值是()A.B.C.D.12.设椭圆+=1(a>b>0)的左、右焦点分别为F1、F2,P是椭圆上一点,|PF1|=λ|PF2|(≤λ≤2),∠F1PF2=,则椭圆离心率的取值范围为()A.(0,]B.[,]C.[,]D.[,1)二、填空题:本大题共4个小题,每小题5分.、共20分.13.已知=(2,3,1),=(x,y,2),若∥,则x+y=.14.若变量x,y满足约束条件,则z=x﹣2y的最小值为.15.已知在观测点P处测得在正东方向A处一轮船正在沿正北方向匀速航行,经过1小时后在观测点P测得轮船位于北偏东60°方向B处,又经过t小时发现该轮船在北偏东45°方向C处,则t=.SHAPE\*MERGEFORMAT16.对于正整数n,设曲线y=xn(2﹣x)在x=2处的切线与y轴交点的纵坐标为an,则数列{an}的前n项和为Sn=.三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.已知等差数列{an},公差为2,的前n项和为Sn,且a1,S2,S4成等比数列,(1)求数列{an}的通项公式;(2)设bn=(n∈N*),求数列{bn}的前n项和Tn.18.△ABC中,角A、B、C的对边分别为a、b、c.已知(a+c)2﹣b2=3ac(1)求角B;(2)当b=6,sinC=2sinA时,求△ABC的面积.19.已知抛物线C:y2=2px(p>0)的焦点为F,C上一点(3,m)到焦点的距离为5.(1)求C的方程;(2)过F作直线l,交C于A、B两点,若线段AB中点的纵坐标为﹣1,求直线l的方程.20.如图,在多面体ABCDE中,∠BAC=90°,AB=AC=2,CD=2AE=2,AE∥CD,且AE⊥底面ABC,F为BC的中点.(Ⅰ)求证:AF⊥BD;(Ⅱ)求二面角A﹣BE﹣D的余弦值.SHAPE\*MERGEFORMAT21.已知函数f(x)=ax2+bx在x=1处取得极值2.(Ⅰ)求f(x)的解析式;(Ⅱ)若(m+3)x﹣x2ex+2x2≤f(x)对于任意的x∈(0,+∞)成立,求实数m的取值范围.22.曲线C上的动点M到定点F(1,0)的距离和它到定直线x=3的距离之比是1:.(Ⅰ)求曲线C的方程;(Ⅱ)过点F(1,0)的直线l与C交于A,B两点,当△ABO面积为时,求直线l的方程.2015-2016学年邯郸市高二(上)期末数学试卷(理科)参考答案与试题解析1.A.2.D.3.B.4.B.5.A.6.B.7.A.8.D.9.D10.C11.C12.B【解答】解:设F1(﹣c,0),F2(c,0),由椭圆的定义可得,|PF1|+|PF2|=2a,可设|PF2|=t,可得|PF1|=λt,即有(λ+1)t=2a①由∠F1PF2=,可得|PF1|2+|PF2|2=4c2,即为(λ2+1)t2=4c2,②由②÷①2,可得e2=,令m=λ+1,可得λ=m﹣1,即有==2(﹣)2+,由≤λ≤2,可得≤m≤3,即≤≤,则m=2时,取得最小值;m=或3时,取得