预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共19页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2015-2016学年上海市华师大二附中高二(上)期中数学试卷一、填空题1.计算:=.2.关于x,y的方程组的增广矩阵是.3.方程的解为.4.已知M(2,5),N(3,﹣2),点P在直线上,且满足=3.则点P的坐标为.5.已知数列{log2(an﹣1)}(n∈N*)为等差数列,且a1=3,a2=5,则=.6.已知无穷等比数列{an}的所有项的和为3,则a1的取值范围为.7.直线过(﹣1,3)且在x,y轴上的截距的绝对值相等,则直线方程为.8.在△ABC中,A(2,4),B(1,﹣3),C(﹣2,1),则边BC上的高AD所在的直线的点斜式方程为.9.设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB|的最大值是.10.已知,α∈(0,π),β∈(π,2π),与的夹角为θ1,与的夹角为θ2,且=.二、选择题11.如图给出了一个算法流程图,该算法流程图的功能是()A.求三个数中最大的数B.求三个数中最小的数C.按从小到大排列D.按从大到小排列12.下列有关平面向量分解定理的四个命题中:①一个平面内有且只有一对不平行的向量可作为表示该平面所有向量的基;②一个平面内有无数多对不平行向量可作为表示该平面内所有向量的基;③平面向量的基向量可能互相垂直;④一个平面内任一非零向量都可唯一地表示成该平面内三个互不平行向量的线性组合.正确命题的个数是()A.1B.2C.3D.413.对于向量(i=1,2,…n),把能够使得||+||+…+||取到最小值的点P称为Ai(i=1,2,…n)的“平衡点”.如图,矩形ABCD的两条对角线相交于点O,延长BC至E,使得BC=CE,联结AE,分别交BD、CD于F、G两点.下列结论中,正确的是()A.A、C的“平衡点”必为OB.D、C、E的“平衡点”为D、E的中点C.A、F、G、E的“平衡点”存在且唯一D.A、B、E、D的“平衡点”必为F14.在平面直角坐标系中定义两点P(x1,y1),Q(x2,y2)之间的交通距离为d(P,Q)=|x1﹣x2|+|y1﹣y2|.若C(x,y)到点A(1,3),B(6,9)的交通距离相等,其中实数x,y满足0≤x≤10,0≤y≤10,则所有满足条件的点C的轨迹的长之和为()A.1B.C.4D.5(+1)三、解答题(共5题,满分44分)15.用在矩阵行列式中所学的知识和方法,解方程组:.16.已知命题P:,其中c为常数,命题Q:把三阶行列式中第一行、第二列元素的代数余子式记为f(x),且函数f(x)在上单调递增.若命题P是真命题,而命题Q是假命题,求实数c的取值范围.17.已知0<k<4,直线l1:kx﹣2y﹣2k+8=0和直线与两坐标轴围成一个四边形,求使这个四边形面积取最小时的k的值及最小面积的值.18.M为△ABC的中线AD的中点,过点M的直线分别交两边AB,AC于点P,Q,设,记y=f(x).(1)求函数y=f(x)的表达式;(2)求的取值范围.19.对于任意的n∈N*,若数列{an}同时满足下列两个条件,则称数列{an}具有“性质m”:①;②存在实数M,使得an≤M成立.(1)数列{an}、{bn}中,an=n(n∈N*)、(n∈N*),判断{an}、{bn}是否具有“性质m”;(2)若各项为正数的等比数列{cn}的前n项和为Sn,且,,证明:数列{Sn}具有“性质m”,并指出M的取值范围;(3)若数列{dn}的通项公式(n∈N*).对于任意的n≥3(n∈N*),数列{dn}具有“性质m”,且对满足条件的M的最小值M0=9,求整数t的值.2015-2016学年上海市华师大二附中高二(上)期中数学试卷参考答案与试题解析一、填空题1.计算:=.【考点】极限及其运算.【专题】计算题.【分析】先分子分母同除以n2,再利用极限的运算性质可求.【解答】解:由题意,,故答案为.【点评】本题主要考查极限的运算及性质,属于基础题.2.关于x,y的方程组的增广矩阵是.【考点】矩阵的应用.【专题】计算题;规律型;矩阵和变换.【分析】先把方程组方程组改写为,再由增广矩阵的概念进行求解.【解答】解:二元一次方程组,即,∴二元一次方程组的增广矩阵是,故答案为:【点评】本题考查二元一次方程组的矩阵形式,是基础题,解题时要认真审题,注意熟练掌握增广矩阵的概念.3.方程的解为x1=2,x2=log25.【考点】三阶矩阵.【专题】计算题.【分析】可以用三阶矩阵的化简方法把方程左边化简,得到一个关于2x的一元二次方程,解出x即可【解答】解:由,化简得:方程﹣20×2x+4x+11×2x+20=0则方程同解于(2x)2﹣9×2x+20=0得2x=4或2x=5,x1=2,x2=log25故方程的解为x1=2,x2=lo