预览加载中,请您耐心等待几秒...
1/9
2/9
3/9
4/9
5/9
6/9
7/9
8/9
9/9

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

浙江省杭州市七校2015-2016学年高二数学下学期期中试题一、选择题(本题共10小题,每小题4分,共40分)1.抛物线的焦点坐标是(▲)A(—2,0)B(0,—2)C(2,0)D(0,2)2、已知点,则点关于原点对称的点的坐标为(▲)A.B.C.D.3、椭圆的焦距是(▲)A.4B.2eq\r(2)C.8D.与m有关4、下列有关命题的说法正确的是(▲)A.命题“若”的否命题为:“若”;B.“”是“”的必要不充分条件;C.命题“若,则”的逆否命题为假命题;D.命题“若,则不全为零”的否命题为真命题.5、设双曲线的左、右焦点分别是、,过点的直线交双曲线右支于不同的两点、.若△为正三角形,则该双曲线的离心率为(▲)A.B.C.D.6、不等式成立的一个必要而不充分条件是(▲)A.B.C.D.7、正方体中,是棱的中点,则与所成角的余弦值(▲)A.B.C.D.8、如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则BC1与平面BB1D1D所成角的正弦值为(▲)A.B.C.D.(第8题)(第9题)9、如图,正方体的棱长为2,点是平面上的动点,点在棱上,且,且动点到直线的距离与点到点的距离的平方差为4,则动点的轨迹是(▲)A.圆B.抛物线C.双曲线D.直线10、过M(-2,0)的直线m与椭圆eq\f(x2,2)+y2=1交于P1,P2两点,线段P1P2的中点为P,设直线m的斜率为k1(k1≠0),直线OP的斜率为k2,则k1k2的值为(▲)A.-eq\f(1,2)B.-2C.eq\f(1,2)D.2二、填空题(本题共7小题,每小题4分,共28分)11、命题“存在实数,使”的否定是.12、已知点P到点的距离比它到直线的距离大1,则点P满足的方程为.13、是椭圆上的点,、是椭圆的两个焦点,,则的面积等于.14、已知椭圆C:,斜率为1的直线与椭圆C交于两点,且,则直线的方程为.15、在正三棱柱ABC-A1B1C1中,若AB=2,AA1=1,则点A到平面A1BC的距离为.16、已知向量,,且,则=.17、抛物线上两点、关于直线对称,且,则等于三、解答题(本题共5小题,共52分)18、(本题满分8分)已知双曲线与椭圆共焦点,且以为渐近线,求双曲线方程.19、(本题满分10分)设命题“对任意的”,命题“存在,使”。如果命题为真,命题为假,求实数的取值范围。20、(本题满分10分)已知,求实数m的值,使得(1)(2)21、(本题满分10分)已知抛物线C:的焦点F(1,0),O为坐标原点,A、B是抛物线C上异于O的两点。求抛物线C的方程;(2)若,求证直线AB过定点。22、(本题满分14分)如图所示,在四棱锥P­ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(1)证明:BE⊥DC;(2)求直线BE与平面PBD所成角的正弦值;(3)若F为棱PC上一点,满足BF⊥AC,求二面角F­AB­P的余弦值.2015学年第二学期期中杭州地区七校联考高二年级数学学科参考答案一、选择题(本题共10小题,每小题4分,共40分)题号12345678910答案CACDBABDBA二、填空题(本题共7小题,每小题4分,共28分)11、对任意的,都有12、13、14、15、16、317、1三、解答题(本题共5小题,共52分)18、(本题满分8分)解:由椭圆.…………………………………………………………2'设双曲线方程为,…………………………………………………3'由渐近线为,则又……………………………………………5'得……………………………………………………………………………7'故所求双曲线方程为……………………………………………………………8'19、(本题满分10分)解:P:对任意的恒成立,令………………………………………2'…………………………………………………………………………………3'……………………………5'………………………………7'…………………………………………………8'或…………………………………………………9'………………………………………………10'20、(本题满分10分)解:(1)………………………………………………2'……………………………………4'……………………………………6'………………………………………………………………………7'(2)………………………………9'…………………………………………………………………………10'21、(本题满分10分)解:(1)依题意知,………………………………4',……………………………5'由,则…………………………………6',………………………………………………………7'…………………