预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

用心爱心专心同步练习g3.1100正态分布、线性回归1.已知从某批材料中任取一件时,取得的这件材料的强度ε~N(200,18),则取得的这件材料的强度不低于180的概率为()A.0.9973B.0.8665C.0.8413D.0.81592.已知连续型随机变量x的概率密度函数是其中常数A>0,则A的值为()A.1B.bC.D.b-a3.某工厂某产品产量x(千件)与单位成本y(元)满足回归直线方程,则以下说法中正确的是()A.产量每增加1000件,单位成本下降1.82元B.产量每减少1000件,单位成本上升1.82元C.产量每增加1000件,单位成本上升1.82元D.产量每减少1000件,单位成本下降1.82元4.工人月工资(元)依劳动生产率(千元)变化的回归方程为,下列判断正确的是()A.劳动生产率为1000元时,工资为150元B.劳动生产率提高1000元时,工资提高150元C.劳动生产率提高1000元时,工资提高90元D.劳动生产率为1000元时,工资为90元5.若随机变量ε~N(5,2),且P(ε<a)=0.9,则a=_____________。6.已知连续型随机变量x的分布函数为:则a=___________,_____________。7.设随机变量ε服从N(0,1),求下列各式的值:(1)P(ε≥2.55);(2)P(ε<-1.44);(3)P(|ε|<1.52)。8.某厂生产的圆柱形零件的外径ε~N(4,0.25)。质检人员从该厂生产的1000件零件中随机抽查一件,测得它的外径为5.7cm。试问该厂生产的这批零件是否合格?9.现随机抽取了我校10名学生在入学考试中的数学成绩(x)与入学后的第一次考试中的数学成绩(y),数据如下:学生号12345678910x12010811710410311010410599108y84648468696869465771试问这10个学生的两次数学考试成绩是否具有显著性线性相关关系?10.某工业部门进行一项研究,分析该部门的产量与生产费用之间的关系,从这个工业部门内随机抽取选了10个企业作样本,有如下资料:产量(千件)40424855657988100120140生产费用(千元)150140160170150162185165190185完成下列要求:(1)计算x与y的相关系数;(2)对这两个变量之间是否线性相关进行相关性检验;(3)设回归直线方程为,求系数a,b。同步练习(参考答案):1.B2.C3.A4.C5.6.526.,提示:5.因为ε~N(5,2),,查表知,解得a=6.52。6.由解得,即为图中阴影部分的面积。7.分析一个随机变量若服从标准正态分布,可以借助于标准正态分布表,查出其值。但在标准正态分布表中只给出了,即的情形,对于其它情形一般用公式:φ(-x)=1-φ(x);p(a<x<b)=φ(b)-φ(a)及等来转化。解(1)(2);(3)说明从本例可知,在标准正态分布表中只要给出了的概率,就可以利用上述三个公式求出其它情形下的概率。8.分析欲判定这批零件是否合格,由假设检验基本思想可知,关键是看随机抽查的一件产品的尺寸是在(μ-3σ,μ+3σ)内,还是在(μ-3σ,μ+3σ)之外。解由于圆柱形零件的外径ε~N(4,0.25),由正态分布的特征可知,正态分布N(4,0.25)在区间(4-3×0.5,4+3×0.5)即(2.5,5.5)之外取值的概率只有0.003,而,这说明在一次试验中,出现了几乎不可能发生的小概率事件,根据统计中假设检验的基本思想,认为该厂这批产品是不合格的。说明判断某批产品是否合格,主要运用统计中假设检验的基本思想。如记住课本P33表格中三种区间内取值的概率,对我们的解题可以带来很大的帮助。9.易得,,,68,。则相关系数为。查表得自由度为10-2=8相应的相关关系临界值,由知,两次数学考试成绩有显著性的线性相关关系。10.(1)制表如下:i1234567891040424855657988100120140150140160170150162185165190185600058807680935097501279816280165002280025900,,,,。。即x与y的相关系数r≈0.806。(2)查表显著水平0.05,自由度10-2=8相应的相关系数临界值,∵,所以x与y之间具有线性相关关系。(3),a=165.7-0.397×77.7=134.8。