一种单分散氮掺杂中空碳纳米多面体及其制备方法.pdf
努力****甲寅
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
一种单分散氮掺杂中空碳纳米多面体及其制备方法.pdf
本发明公开了一种单分散氮掺杂中空碳纳米多面体及其制备方法,本发明以ZnO纳米球为模板和Zn源,2‑甲基咪唑作为有机配体,合成核壳结构ZnO@ZIF‑8纳米单晶复合材料,将其置于高温炉中,在惰性气体气氛中煅烧2‑4h,煅烧温度为800‑900℃,煅烧后直接得到具有中空结构的碳纳米材料。本发明制备工艺简单,无去模板过程。本发明方法制得的中空结构碳材料具有均一的多面体形貌,比表面积高,氮含量高,在电化学储能、催化和燃料电池等领域具有很大的应用潜力。
一种中空亚微米氮掺杂碳管及其制备方法.pdf
本发明属于材料制备技术领域,具体涉及一种中空亚微米氮掺杂碳管的制备方法,包括:步骤1,将有机小分子溶解在有机溶剂中得到溶液A,同时将表面活性剂分散至去离子水中得到溶液B;边搅拌边将溶液A滴加至溶液B中,得到自组装有机结构;步骤2,将上述的自组装有机结构加入到pH=8.5Tris缓冲液中超声分散,然后加入多巴胺搅拌反应,得到聚多巴胺包裹的自组装有机结构;步骤3,将上述的聚多巴胺包覆的自组装有机结构置于管式炉中高温煅烧,得到中空亚微米氮掺杂碳管。本发明解决了中空型亚微米碳管的空白,利用有机小分子和多巴胺形成可
氮掺杂纳米碳笼及其制备方法和应用.pdf
本发明涉及新型纳米碳材料技术领域,公开了一种氮掺杂纳米碳笼及其制备方法,以及该氮掺杂纳米碳笼在燃料电池催化剂载体和/或燃料电池催化剂中的应用,所述氮掺杂纳米碳笼具有中空笼状的结构,所述氮掺杂纳米碳笼的直径为2‑200nm;以氮的总摩尔量为基准,由X射线光电子能谱测得所述氮掺杂纳米碳笼的表面的氮中,吡咯氮和/或吡啶氮的摩尔含量大于80%。该氮掺杂纳米碳笼应用于燃料电池催化剂载体和/或燃料电池催化剂中时,表现出良好的催化活性。
一种氮掺杂碳纳米材料的制备方法.pdf
一种氮掺杂碳纳米材料的制备方法,涉及能源材料技术领域,将三聚氰胺与柠檬酸钾混合研磨后,研磨可以使两种固体粉末充分混合,使固相分散均匀。在惰性气体的保护下置于管式炉中煅烧,待自然冷却后,将冷却的产物采用盐酸、水洗涤,取得固相干燥,得到氮掺杂的碳纳米材料。本发明操作方法简单易行、流程较短、原料易得,所得到的氮掺杂碳纳米材料物化性质较为稳定,且具有较高比表面积和比电容,可提高多孔碳纳米片电极材料的容量。
一种氮掺杂碳纳米角的制备方法.pdf
本发明公开一种制备氮掺杂碳纳米角的方法,属于直流电弧法制备碳纳米材料领域。本发明所述方法为采用直流电弧法制备氮掺杂碳纳米角,用石墨棒作为电弧阴阳两极,且阴极和阳极竖直放置,电弧炉抽真空后,充入缓冲气体并启动电弧,反应结束后,收集反应腔内壁沉积物即为氮掺杂碳纳米角。本发明通过透射电子显微镜(TEM)与X射线光电子能谱(XPS)表明内壁沉积物为氮掺杂碳纳米角,且碳纳米角纯度高,单个颗粒直径为2~5nm并聚集成直径为80~100nm的球状聚集体。该方法采用直流电弧法制备氮掺杂的碳纳米角,具有安全可靠、成本低廉、