预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共11页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号CN106773699A(43)申请公布日2017.05.31(21)申请号201611252189.9(22)申请日2016.12.30(71)申请人杭州电子科技大学地址310018浙江省杭州市下沙高教园区2号大街(72)发明人徐卫德张日东(74)专利代理机构杭州奥创知识产权代理有限公司33272代理人王佳健(51)Int.Cl.G05B13/04(2006.01)权利要求书3页说明书7页(54)发明名称电加热炉的遗传优化的多模型预测函数控制方法(57)摘要本发明公开了一种电加热炉的遗传优化的多模型预测函数控制方法。本发明首先把整个工作的区域按照某种方法划分为若干个子工作区间,在每个子区域建立其相应的分数阶模型再结合遗传算法优化求解预测函数的基函数的个数得到最优解的个数。从而把原来的非线性的模型转换为了线性分数阶模型,模型的精度避免了非线性的复杂性,通过在遗传算法选取一组最合适的基函数,利用基函数的个数求解得到控制量,从而减少了系统的计算量,使得控制效果更加精确,避免了复杂的计算。CN106773699ACN106773699A权利要求书1/3页1.电加热炉的遗传优化的多模型预测函数控制方法,其特征在于该方法包括以下步骤:1建立被控对象的多模型1.1根据工作区域,按照工作的温度范围进行i等分,i是要进行工作区域划分的个数;1.2在每个工况区间中采集实际过程对象的实时阶跃响应数据,利用该数据建立被控对象的分数阶传递函数模型Mi,形式如下:其中,Mi为第i个子模型,α1,i为第i个系统的微分阶次,T1,i为相应的系数,S为拉普拉斯变换算子,Km,i为模型比例增益系数,τm,i为模型的滞后时间常数;1.3通过Oustaloup近似方法将分数阶模型数值化处理为:α(2n-1-α)/N其中,α为分数阶微分阶次,0<α<1,N为选定的近似阶次,Kα=Wh,Wn'=WbWu,Wn=(2n-1+a)/NWbWu,Wh和Wb分别为拟合频率的上限值和下限值;1.4根据步骤1.3中Oustaloup近似方法,将步骤1.2中的分数阶模型转化为整数高阶模型,再通过采样时间TS和零阶保持器后离散化得到如下形式:其中,fj,hj(j=1,2,…,l)均为离散近似后得到的系数,d=τ/TS为过程的滞后时间,l为离散模型的长度,y(k)为k时刻的过程模型输出,u(k-d-1)为过程模型在k-d-1时刻的输入值;为了减少误差通过对模型进行一阶向后差分,得到如下形式:1.5选取系统的状态变量如下:TΔXm(k)=[Δy(k),Δy(k-1),…,Δy(k-l),Δu(k-1),…,Δu(k-l+1-d)](5)结合步骤1.4,得到被控对象的状态空间模型,形式如下:其中,T为矩阵的转置符号,ΔXm(k)的维数为(2l+d-1)×1;2CN106773699A权利要求书2/3页TBm=[0…010…0]Cm=[10…00…0]输出的误差定义为:e(k)=y(k)-r(k)(7)其中r(k)为参考轨迹;1.6预测函数控制的输入量是由一组相对应的基函数线性组合,表述为:其中μi为基函数的系数,fj(i)是基函数在i时刻的值1.7由于实际的过程存在误差,实际与模型之间的误差为:1.8通过滚动优化,为了求取当前最优的控制量,目标函数选择如下:2.利用遗传算法优化预测函数中基函数的个数2.1设定种群染色体大小为N,进化的最大迭代次数为N1,随机初始化种群,通过适应度函数优化基函数个数目可得目标函数:f=J+ω·nr其中ω为权重系数,J最优目标函数;2.2采用十进制编码方式对染色体进行编码,第i个的染色体表示为:其中i=1,2,…,N,N是种群的大小,nr是基函数的个数,1≤nr≤D,D是基函数的最大个数;染色体Ci′中的元素为:3CN106773699A权利要求书3/3页ci=fmin+r(fmax-fmin),1≤i≤nr其中r是位于[0,1]之间的随机变量fmax,fmin分别为基函数的最大值和最小值;2.3选取染色体的操作算子的具体步骤为:2.3.1染色体交叉运算;选取交叉算子Pc,使染色体Ci′和下一个染色体Ci+1′以概率Pc进行交叉运算,产生下一代染色体;2.3.2染色体修剪因子运算;以Pn的概率修改基函数的个数nr,进而改变染色体中的元素Ci′,从而完成染色个体变异的操作;2.4依照步骤2.2到2.3进行循环重复优化搜索,如果达到最大的进化次数N1结束优化搜索计算,得到经过遗传算法优化后的染色体Ci′,进而得到最优的基函数个数nr';2.5在求取最优的基函数的个数的情况下,求取目标函数的最优值从而得到控制量的参数为:其中:T-1Tμj=-(0,…,1,0)(GQG)GQ[Yr(k)-Fu(