预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共30页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2006年高考数学专题复习概率与统计问题的题型与方法一.复习目标:了解典型分布列:0~1分布二项分布几何分布。了解离散型随机变量的期望值、方差的意义会根据离散型随机变量的分布列求出期望值、方差。在实际中经常用期望来比较两个类似事件的水平当水平相近时再用方差比较两个类似事件的稳定程度。了解正态分布的意义能借助正态曲线的图像理解正态曲线的性质。了解标准正态分布的意义和性质掌握正态总体转化为标准正态总体N(01)的公式及其应用。通过生产过程的质量控制图了解假设检验的基本思想。了解相关关系、回归分析、散点图等概念会求回归直线方程。了解相关系数的计算公式及其意义会用相关系数公式进行计算。了解相关性检验的方法与步骤会用相关性检验方法进行检验。二.考试要求:⑴了解随机变量、离散型随机变量的意义会求出某些简单的离散型随机变量的分布列。⑵了解离散型随机变量的期望值、方差的意义会根据离散型随机变量的分布列求出期望值、方差。⑶会用抽机抽样系统抽样分层抽样等常用的抽样方法从总体中抽取样本。⑷会用样本频率分布去估计总体分布。⑸了解正态分布的意义及主要性质。⑹了解假设检验的基本思想。⑺会根据样本的特征数估计总体。⑻了解线性回归的方法。三.教学过程:(Ⅰ)基础知识详析㈠随机事件和统计的知识结构:㈡随机事件和统计的内容提要1.主要内容是离散型随机变量的分布列、期望与方差抽样方法总体分布的估计正态分布和线性回归。2.随机变量的概率分布(1)离散型随机变量的分布列:ε……P……两条基本性质①…);②P1+P2+…=1。(2)连续型随机变量概率分布:由频率分布直方图估计总体分布密度曲线y=f(x);总体分布密度函数的两条基本性质:①f(x)≥0(x∈R);②由曲线y=f(x)与x轴围成面积为1。3.随机变量的数学期望和方差(1)离散型随机变量的数学期望:…;反映随机变量取值的平均水平。(2)离散型随机变量的方差:……;反映随机变量取值的稳定与波动集中与离散的程度。(3)基本性质:;。4.三种抽样方法。5.二项分布和正态分布(1)记ε是n次独立重复试验某事件发生的次数则ε~B(np);其概率…。期望Eε=np方差Dε=npq。(2)正态分布密度函数:期望Eε=μ方差。(3)标准正态分布:若则。6.线性回归:当变量x取值一定时如果相应的变量y的取值带有一定的随机性那么就说变量y与x具有相关关系。对于它们的一组观测值来说如果与之相应的在平面直角坐标系中的点大体上集中在一条直线的附近就说变量y与x之间具有线性相关关系。相关系数用来检验线性相关显著水平通常通过查表取显著水平0.05自由度n-2的若为显著;否则为不显著。㈢离散型随机变量的分布列随机变量:如果随机试验的结果可以用一个变量来表示那么这样的变量叫做随机变量。随机变量最常见的两种类型即离散型随机变量和连续型随机变量。如果对于随机变量可能取的值可以按一定次序一一列出这样的随机变量叫做离散型随机变量;如果随机变量可以取某一区间内的一切值这样的随机变量叫做连续型随机变量。离散型随机变量的分布列:如果离散型随机变量的可能取值为xi(i=12…)由于试验的各个结果的出现有一定的概率于是随机变量取每一个值也有一定的概率P(=xi)=pi人们常常习惯地把它们写成表格的形式如:x1x2…xi…Pp1p2…pi…这种表即为随机变量的概率分布简称为的分布列。分布列的表达式可有如下几种:(1)表格形式;(2)一组等式;(3)压缩为一个带“i”的等式。1.在实际问题中人们常关心随机变量的特征而不是随机变量的具体值。离散型随机变量的期望和方差都是随机变量的特征数期望反映了随机变量的平均取值方差与标准差都反映了随机变量取值的稳定与波动、集中与离散的程度。其中标准差与随机变量本身有相同的单位。2.离散型随机变量期望和方差的计算公式设离散型随机变量的分布列为P(=xi)=pii=12…则:E=ipiD=i-E)2pi=i2pi-(E)2=E(2)-(E)2。3.离散型随机变量期望和方差的性质E(a+b)=aE+bD(a+b)=a2D。4.二项分布的期望与方差若~B(np)则E=npD=np(1-p)。㈣抽样方法三种常用抽样方法:1.简单随机抽样:设一个总体的个数为N。如果通过逐个抽取的方法从中抽取一个样本且每次抽取时各个个体被抽到的概率相等就称这样的抽样为简单随机抽样。实现简单随机抽样常用抽签法和随机数表法。2