预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

用心爱心专心课题:正弦定理、余弦定理(1)教学目的:⑴使学生掌握正弦定理⑵能应用解斜三角形,解决实际问题教学重点:正弦定理教学难点:正弦定理的正确理解和熟练运用授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪教学过程:一、引言:在直角三角形中,由三角形内角和定理、勾股定理、锐角三角函数,可以由已知的边和角求出未知的边和角那么斜三角形怎么办?——提出课题:正弦定理、余弦定理二、讲解新课:正弦定理:在任一个三角形中,各边和它所对角的正弦比相等,即===2R(R为△ABC外接圆半径)1.直角三角形中:sinA=,sinB=,sinC=1即c=,c=,c=.∴==2.斜三角形中证明一:(等积法)在任意斜△ABC当中S△ABC=两边同除以即得:==证明二:(外接圆法)如图所示,∠A=∠D∴同理=2R,=2R证明三:(向量法)过A作单位向量垂直于由+=两边同乘以单位向量得•(+)=•则•+•=•∴||•||cos90+||•||cos(90C)=||•||cos(90A)∴∴=同理,若过C作垂直于得:=∴==正弦定理的应用从理论上正弦定理可解决两类问题:1.两角和任意一边,求其它两边和一角;2.两边和其中一边对角,求另一边的对角,进而可求其它的边和角(见图示)已知a,b和A,用正弦定理求B时的各种情况:⑴若A为锐角时:⑵若A为直角或钝角时:三、讲解范例:例1已知在解:∴由得由得例2在解:∵∴例3解:,例4已知△ABC,BD为B的平分线,求证:AB∶BC=AD∶DC分析:前面大家所接触的解三角形问题是在一个三角形内研究问题,而B的平分线BD将△ABC分成了两个三角形:△ABD与△CBD,故要证结论成立,可证明它的等价形式:AB∶AD=BC∶DC,从而把问题转化到两个三角形内,而在三角形内边的比等于所对角的正弦值的比,故可利用正弦定理将所证继续转化为,再根据相等角正弦值相等,互补角正弦值也相等即可证明结论证明:在△ABD内,利用正弦定理得:在△BCD内,利用正弦定理得:∵BD是B的平分线∴∠ABD=∠DBC∴sinABD=sinDBC∵∠ADB+∠BDC=180°∴sinADB=sin(180°-∠BDC)=sinBDC∴∴评述:此题可以启发学生利用正弦定理将边的关系转化为角的关系,并且注意互补角的正弦值相等这一特殊关系式的应用四、课堂练习:1在△ABC中,,则k为()A2RBRC4RD(R为△ABC外接圆半径)2△ABC中,sin2A=sin2B+sin2C,则△ABC为()A直角三角形B等腰直角三角形C等边三角形D等腰三角形3在△ABC中,sinA>sinB是A>B的A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件4在△ABC中,求证:参考答案:1A,2A3C4五、小结正弦定理,两种应用六、课后作业:1在△ABC中,已知,求证:a2,b2,c2成等差数列证明:由已知得sin(B+C)sin(B-C)=sin(A+B)·sin(A-B)cos2B-cos2C=cos2A-cos2B2cos2B=cos2A+cos2C∴2sin2B=sin2A+sin2C由正弦定理可得2b2=a2+c2即a2,b2,c2成等差数列七、板书设计(略)八、课后记: