预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共17页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

1.极值点与极值的概念(1)极小值点与极小值如图,函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧__________,右侧__________,则把点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)极大值点与极大值如图,函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b的左侧___________,右侧___________,则把点b叫做函数__________的极大值点,f(b)叫做函数y=f(x)的极大值.__________、__________统称为极值点,________和________统称为极值.2.求函数y=f(x)的极值的方法解方程f′(x)=0,当f′(x0)=0时:(1)如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是________.(2)如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是_________.解:f′(x)=x2-4.解方程x2-4=0,得x1=-2,x2=2.由f′(x)>0得x<-2或x>2;由f′(x)<0得-2<x<2.当x变化时,f′(x),f(x)的变化情况如下表: