一种磷氮共掺杂纳米多孔碳颗粒的制备方法.pdf
淑然****by
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
一种磷氮共掺杂纳米多孔碳颗粒的制备方法.pdf
本发明公开了一种磷氮共掺杂纳米多孔碳颗粒的制备方法,其特征在于,将磷源、铁源、氮源、碳源分别置于引流瓶中,由氮气作为载气通过引流瓶将原料带入管式炉高温区,管式炉温度设定在500~1350℃,化学气相沉积后形成前驱体纳米颗粒并随载气离开管式炉高温区,由载气带出至管式炉外连接的收集装置中,从而收集产物前驱体;将前驱体,经过酸洗除去铁颗粒,随后洗涤、冷冻干燥得到磷氮共掺杂多孔碳纳米颗粒。本发明制得的颗粒尺寸、形貌可控,操作简单,具有成本低廉,工序较少、操作简单等优点,同时得到的纳米颗粒具有较高的电化学活性,可应
一种氮、氧、硫共掺杂多孔碳纳米颗粒的制备方法.pdf
本发明涉及一种氮、氧、硫共掺杂多孔碳纳米颗粒的制备方法。按1:1.4~5.7:50~210质量比依次称取硫脲、对苯醌和乙醇,先将硫脲和对苯醌溶于乙醇中混合均匀,在300~800转/分的搅拌速度下,于30~70℃反应120min。所得胺醌聚合物过滤、乙醇洗涤、干燥后与氢氧化钾以1:0.5~3的质量比混合,然后置于管式炉中,惰性气体保护,按2~20℃min
一种氮掺杂多孔碳颗粒的制备方法.pdf
本发明公开了一种氮掺杂多孔碳颗粒的制备方法,首先利用“黑面包反应”形成多孔碳网络结构,对其进行清洗数次,冷冻干燥和球磨得多孔碳颗粒,将多孔碳颗粒置于具有氨气氛围的管式炉中进行高温热解得到氮掺杂多孔碳颗粒。本发明具有以下优势:(1)“黑面包反应”简单快速,非常适合较大规模生产多孔碳网络结构;(2)制备的材料具有较大的比表面积和多孔结构;(3)代表性产品在催化氧还原过程中展示出良好的电化学稳定性。另外,该材料在锂离子电池、超级电容器以及其它领域都具有潜在的应用价值。
一种添加碳纳米颗粒的磷氮双掺杂石墨烯制备方法.pdf
本发明公开了一种添加碳纳米颗粒的磷氮双掺杂石墨烯制备方法。首先将0.1~0.5g片状氧化石墨烯置于乙醇溶液中均匀搅拌得到氧化石墨烯悬浊液;再称取1g~10g的六氯环三磷腈溶于氧化石墨烯悬浊液中均匀搅拌;在六氯环三磷腈与氧化石墨烯的混合悬浊液中加入5mg~50mg的活性炭纳米颗粒固体粉末后超声分散,再均匀搅拌均匀。待混合溶液变为黑色胶装粘稠态后置于真空干燥箱中,使剩余乙醇完全蒸发;将干燥得到的六氯环三磷腈与氧化石墨烯固体用去离子水清洗3~5遍,再烘干研磨均匀,使用20~40目筛得到六氯环三磷腈与氧化石墨烯混
用生物质制备氮、磷、铁共掺杂纳米多孔碳的开题报告.docx
用生物质制备氮、磷、铁共掺杂纳米多孔碳的开题报告一、选题背景和研究意义在当前的环保和可持续发展倡议下,生物质作为一种资源丰富、可再生、低碳排放、环境友好的天然物质,备受研究者的关注。生物质经过一系列的处理,可以得到多种有用的产物,如生物质炭、木质纤维素等。其中,生物质炭因其良好的化学稳定性、高比表面积、多孔结构以及对环境污染物的吸附性能等优点而备受重视。同时,纳米多孔碳材料具有较高的比表面积以及多孔结构,可以增大活性位点的表面积,提高催化效率和选择性,成为催化剂、吸附剂以及电化学电极等领域的研究热点。氮、