预览加载中,请您耐心等待几秒...
1/8
2/8
3/8
4/8
5/8
6/8
7/8
8/8

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

多边形总分100分时间40分钟一、选择题(每题5分)1、如果过多边形一个顶点的对角线有n条,那么这个多边形的边数是()A.nB.n+1C.n+2D.n+3【答案】D【解析】试题分析:根据多边形对角线的条数边数之间的关系求解.解:因为过多边形一个顶点的对角线有n条,所以这个多边形的边数是(n+3)条.故应选D.考点:多边形2、若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是()A.十三边形B.十二边形C.十一边形D.十边形【答案】A【解析】试题分析:根据多边形对角线的条数边数之间的关系求解.解:设多边形的边数是n,根据题意可得:n-3=10,解得:n=13.故应选A.考点:多边形3、把三角形的面积分为相等的两部分的是()A.三角形的角平分线B、三角形的中线C、三角形的高D、以上都不对【答案】B【解析】试题分析:根据三角形的中线进行解答.解:三角形的一条中线把三角形的一条边分成了相等的两段,所以三角形的中线把三角形分成了面积相等的两部分.故应选B.考点:三角形的中线4、如下图是凸多边形的有()A.1个B.2个C.3个D.4个【答案】B【解析】试题分析:根据凸多边形的定义进行判断解:五个图形中只有两个四边形是凸多边形.故应选B.考点:多边形5、已知等腰三角形的周长为24,一边长为4,则另一边长是()A、10B、16C、10或16D、无法确定【答案】A【解析】试题分析:根据三角形三边关系和等腰三角形的性质求解.解:当等腰三角形的腰长是4时,等腰三角形的底边长是24-4-4=16,因为4+4<16,所以不能构成三角形;当等腰三角形的底边长是4时,等腰三角形的腰长是,因为4+10>10,所以能构成三角形.所以另一边长是10.故应选A.考点:1.三角形三边关系;2.等腰三角形的性质6、一个三角形的两边长分别是3和8,而第三边长为奇数,那么第三边长是()A、5或7B、7或9C、9或11D、11【答案】B【解析】试题分析:根据三角形三边关系求出第三边的取值范围,再根据第三边长是奇数判断第三边的长度.解:设三角形的第三边长是x,根据题意可得:8-3<x<8+3,解得:5<x<11,又因为第三边长是奇数,所以第三边长可能是7或9.故应选B.考点:三角形三边关系7、若ΔABC边为a、b、c,则|a-b-c|+|b-c-a|+|c-a-b|=()。A、-a-b-cB、a+b+cC、a+b-cD、a-b+c【答案】B【解析】试题分析:首先根据三角形三边关系判断各代数式的符号,然后再根据约对值的定义去掉绝对值符号,合并同类项求出结果.解:根据三角形三边关系可得:a-b-c<0,b-c-a<0,c-a-b<0,所以|a-b-c|+|b-c-a|+|c-a-b|=b+c-a+a+c-b+b+a-c=a+b+c.故应选B考点:1.三角形三边关系;2.绝对值8、三角形三条高的交点一定在()A、三角形的内部B、三角形的外部C、三角形的内部或外部.D、三角形的内部、外部或顶点【答案】D【解析】试题分析:根据三角形的形状进行判断.解:锐角三角形的三高的交点在三角形内部;直角三角形的三高交点在三角形的一个顶点位置;钝角三角形的三高交点在三角形外部.故应选D.考点:三角形的高9、下列长度的三条线段,能组成三角形的是()A、3cm,4cm,8cmB、4cm,4cm,8cmC、5cm,6cm,10cmD、2cm,5cm,10cm【答案】C【解析】试题分析:根据三角形三边关系进行判断.解:A选项:因为3+$<8,所以不能构成三角形;B选项:因为4+4=8,所以不能构成三角形;C选项:因为5+6>11,所以能构成三角形;D选项:因为2+5<10,所以不能构成三角形.故应选C.考点:三角形三边关系二、填空题(每题5分)10、从n边形的一个顶点出发,最多可以引______条对角线,这些对角线可以将这个多边形分成__个三角形.【答案】(n-3);(n-2)【解析】试题分析:根据多边形对角线的定义求解.解:从n边形的一个顶点出发,最多可以引(n-3)条对角线,这些对角线可以将这个多边形分成(n-2)个三角形.故答案是(n-3);(n-2)考点:多边形11、n边形有_______条边,______个顶点,________个内角。【答案】n;n;n【解析】试题分析:根据多边形的定义求解解:n边形有n条边;n个顶点;n个内角.考点:三角形的稳定性12、十二边形共有条对角线,过一个顶点可作条对角线,可把十二边形分成个三角形。【答案】54;9;10.【解析】试题分析:根据多边形对角线的定义进行解答.解:12边形的对角线的条数是(条),过一个顶点可以作的对角线的条数是12-3=9(条);过一个顶点的对角线可以把十二边形分成的三角形的个数是12-2=10(个).故答案是54;9;10.考点