预览加载中,请您耐心等待几秒...
1/9
2/9
3/9
4/9
5/9
6/9
7/9
8/9
9/9

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

福建省福州时代中学2014届九年级上学期期中模拟数学试题新人教版一、选择题1.下列命题中假命题的个数是()①三点确定一个圆;②三角形的内心到三边的距离相等;③相等的圆周角所对的弧相等;④平分弦的直径垂直于弦;⑤垂直于半径的直线是圆的切线.A、4B、3C、2D、2.下列命题中的假命题是()A三角形的外心到三角形各顶点的距离相等B三角形的外心到三角形三边的距离相等C三角形外心一定在三角形一边的中垂线上D三角形任意两边的中垂线的交点是三角形的外心3.下列命题错误的是()A.经过三个点一定可以作圆B.三角形的外心到三角形各顶点的距离相等C.同圆或等圆中,相等的圆心角所对的弧相等D.平分弦(不是直径)的直径垂直于弦。4.已知两圆半径分别为2和3,圆心距为d,若两圆没有公共点,则下列结论正确的是()第4题A、0<d<1B、d>5C、0<d<1或d>5D、0≤d<1或d>55.如图,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕B点按顺时针方向转动一个角度到的位置,使得点A,B,在同一条直线上,那么这个角度等于()A.30°B.60°C.90°D.120°6.关于x的一元二次方程的一个根是0,则a的值是()A.B.1C.1或D.或07.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为()A.50°B.60°C.70°D.80°第7题第8题第9题8.正方形ABCD内一点P,AB=5,BP=2,把△ABP绕点B顺时针旋转90°得到△CBP',则PP'的长为()A.B.C.3D.9.如图,Rt△ABC中,∠C=90°,O是AB边上一点,⊙O与AC、BC都相切,若BC=3,AC=4,则⊙O的半径为()A.1B.2C.D.10.若,则()A.B.4C.4或D.或2第14题二、填空题(每小题4分,共20分)11.点(2,)关于原点对称的点的坐标是.12.若是整数,则正整数n的最小值为.13.同时从1,2,3这三个数字中任意取出两个不同的数字,则取出的两个数字都是奇数的概率是.14.如图,把一个半径为12cm的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径是cm.第15题15.如图,平面直角坐标系中,⊙O1过原点O,且⊙O1与⊙O2相外切,圆心O1与O2在x轴正半轴上,⊙O1的半径O1P1、⊙O2的半径O2P2都与x轴垂直,且点P1(x1,y1)、P2(x2,y2)在反比例函数(x>0)的图象上,则y1+y2=.16.已知为方程的两个实数根,则=.17.①②③解方程:④解方程:18..如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是,B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2;请直接写出旋转中心的坐标;(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.19.(10分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,篮球1个,黄球若干个,现从中任意摸出一个球是红球的概率为.(1)求口袋中黄球的个数;(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;(3)现规定:摸到红球得5分,摸到黄球得3分,摸到篮球得2分(每次摸后放回),乙同学在一次摸球游戏中,第一次随机摸到一个红球第二次又随机摸到一个蓝球,若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的概率.20.(12分)如图,AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.21.(12分)某校为培育青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个雏形,如图所示,甲、乙两点分别从直径的两端点A、B以顺时针、逆时针的方向同时沿圆周运动,甲运动的路程l(cm)与时间t(s)满足关系:,乙以4cm/s的速度匀速运动,半圆的长度为21cm.(1)甲运动4s后的路程是多少?(2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间?(3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?22.(12分)如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至,旋转角为a.(1)当点恰好落在EF边上时,求旋转角a的值;(2)如图2,G为BC中点,且0°<a<9