预览加载中,请您耐心等待几秒...
1/5
2/5
3/5
4/5
5/5

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

初三数学复习教学案分式方程及应用【回顾与思考】【例题经典】理解分式方程的有关概念例1指出下列方程中,分式方程有()①=5②=5③x2-5x=0④+3=0A.1个B.2个C.3个D.4个【点评】根据分式方程的概念,看方程中分母是否含有未知数.掌握分式方程的解法步骤例2解方程:(1)(2006年成都市);(2)(2006年绍兴市)。【点评】注意分式方程最后要验根。分式方程的应用例3(2006年长春市)某服装厂装备加工300套演出服,在加工60套后,采用了新技术,使每天的工作效率是原来的2倍,结果共用9天完成任务,求该厂原来每天加工多少套演出服.【点评】要用到关系式:工作效率=。【基础训练】1.如果分式的值相等,则x的值是()A.9B.7C.5D.32.(2005年宿迁市)若关于x的方程=0有增根,则m的值是()A.3B.2C.1D.-13.(2006年嘉兴市)有两块面积相同的小麦试验田,分别收获小麦9000kg和15000kg.已知第一块试验田每公顷的产量比第二块少3000kg,若设第一块试验田每公顷的产量为xkg,根据题意,可得方程()4.已知方程有增根,则这个增根一定是()A.2B.3C.4D.55.方程的解是()A.1B.-1C.±1D.06.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x千米,依题,得到的方程是()7.(2006年怀化市)方程的解是_______.8.若关于x的方程-1=0无实根,则a的值为_______.9.若x+=2,则x+=_______.【能力提升】10.解下列方程:(1)=1;(2)(2006年河南省)=3。11.(2006年长沙市)在社会主义新农村建设中,某乡镇决定对一段公路进行改造.已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成.(1)求乙工程队单独完成这项工程所需的天数;(2)求两队合做完成这项工程所需的天数.12.(2006年怀化市)怀化市某乡积极响应党中央提出的“建设社会主义新农村”的号召,在本乡建起了农民文化活动室,现要将其装修.若甲、乙两个装修公司合做需8天完成,需工钱8000元;若甲公司单独做6天后,剩下的由乙公司来做,还需12天完成,共需工钱7500元.若只选一个公司单独完成.从节约开始角度考虑,该乡是选甲公司还是选乙公司?请你说明理由.13.请根据所给方程=1,联系生活实际,编写一道应用题(要求题目完整题意清楚,不要求解方程)14.先阅读下列一段文字,然后解答问题.已知:方程x-=1的解是x1=2,x2=-;方程x-=2的解是x1=3,x2=-;方程x-=3的解是x1=4,x2=-;方程x-=4的解是x1=5,x2=-.问题:观察上述方程及其解,再猜想出方程x-=10的解,并写出检验.【应用与探究】15.阅读理解题:阅读下列材料,关于x的方程:x+=c+的解是x1=c,x2=;x-=c-的妥是x1=c,x2=-;x+=c+的解是x1=c,x2=;x+=c+的解是x1=c,x2=……(1)请观察上述方程与解的特征,比较关于x的方程x+(m≠0)与它们的关系,猜想它的解是什么,并利用“方程的解”的概念进行验证.(2)由上述的观察、比较、猜想、验证,可以得出结论:如果方程的左边是未知数与其倒数的倍数,方程右边的形式与左边完全相同,只把其中未知数换成了某个常数,那么这样的方程可以直接得解,请用这个结论解关于x的方程:x+.答案:例题经典例1:B例2:(1)x=-(2)x=4例3:设服装厂原来每天加工x套,则=9,解之得x=20,经检验x=20是原方程的根,答:略考点精练1.A2.B3.C4.B5.D6.B7.x=08.a=19.x2+=210.(1)x=2(2)x=-11.(1)解:设乙工程队单独完成这项工程需要x天,根据题意得:×20=1,解之得:x=60,经检验:x=60是原方程的解.答:乙工程队单独完成这项工程所需的天数为60天.(2)解:设两队合做完成这项工程需的天数为y天,根据题意得:()y=1,解得:y=24.答:两队合做完成这项工程所需的天数为24天12.解:设甲独做x天完成,乙独做y天完成,设甲每天工资a元,乙每天工资b元.∴甲独做12×750=9000,乙独做24×250=6000,∴节约开支应选乙公司.13.略14.x1=11,x2=-检验略15.(1)x1=c,x2=.