预览加载中,请您耐心等待几秒...
1/6
2/6
3/6
4/6
5/6
6/6

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第五章平面向量第1讲平面向量的概念及其线性运算一、选择题1.已知两个非零向量a,b满足|a+b|=|ab|,则下面结论正确的是()A.a∥bB.a⊥bC.{0,1,3}D.a+b=ab答案B2.对于非零向量a,b,“a+b=0”是“a∥b”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析若a+b=0,则a=-b.∴a∥b;若a∥b,则a=λb,a+b=0不一定成立.答案A3.已知O是△ABC所在平面内一点,D为BC边的中点,且2eq\o(OA,\s\up6(→))+eq\o(OB,\s\up6(→))+eq\o(OC,\s\up6(→))=0,那么().A.eq\o(AO,\s\up6(→))=eq\o(OD,\s\up6(→))B.eq\o(AO,\s\up6(→))=2eq\o(OD,\s\up6(→))C.eq\o(AO,\s\up6(→))=3eq\o(OD,\s\up6(→))D.2eq\o(AO,\s\up6(→))=eq\o(OD,\s\up6(→))解析由2eq\o(OA,\s\up6(→))+eq\o(OB,\s\up6(→))+eq\o(OC,\s\up6(→))=0可知,O是底边BC上的中线AD的中点,故eq\o(AO,\s\up6(→))=eq\o(OD,\s\up6(→)).答案A4.设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,若eq\o(A1A3,\s\up6(→))=λeq\o(A1A2,\s\up6(→))(λ∈R),eq\o(A1A4,\s\up6(→))=μeq\o(A1A2,\s\up6(→))(μ∈R),且eq\f(1,λ)+eq\f(1,μ)=2,则称A3,A4调和分割A1,A2.已知平面上的点C,D调和分割点A,B,则下列说法正确的是().A.C可能是线段AB的中点B.D可能是线段AB的中点C.C、D可能同时在线段AB上D.C、D不可能同时在线段AB的延长线上解析若A成立,则λ=eq\f(1,2),而eq\f(1,μ)=0,不可能;同理B也不可能;若C成立,则0<λ<1,且0<μ<1,eq\f(1,λ)+eq\f(1,μ)>2,与已知矛盾;若C,D同时在线段AB的延长线上时,λ>1,且μ>1,eq\f(1,λ)+eq\f(1,μ)<2,与已知矛盾,故C,D不可能同时在线段AB的延长线上,故D正确.答案D5.已知A,B,C是平面上不共线的三点,O是△ABC的重心,动点P满足eq\o(OP,\s\up6(→))=eq\f(1,3)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)\o(OA,\s\up6(→))+\f(1,2)\o(OB,\s\up6(→))+2\o(OC,\s\up6(→)))),则点P一定为三角形ABC的().A.AB边中线的中点B.AB边中线的三等分点(非重心)C.重心D.AB边的中点解析设AB的中点为M,则eq\f(1,2)eq\o(OA,\s\up6(→))+eq\f(1,2)eq\o(OB,\s\up6(→))=eq\o(OM,\s\up6(→)),∴eq\o(OP,\s\up6(→))=eq\f(1,3)(eq\o(OM,\s\up6(→))+2eq\o(OC,\s\up6(→)))=eq\f(1,3)eq\o(OM,\s\up6(→))+eq\f(2,3)eq\o(OC,\s\up6(→)),即3eq\o(OP,\s\up6(→))=eq\o(OM,\s\up6(→))+2eq\o(OC,\s\up6(→)),也就是eq\o(MP,\s\up6(→))=2eq\o(PC,\s\up6(→)),∴P,M,C三点共线,且P是CM上靠近C点的一个三等分点.答案B6.在四边形ABCD中,eq\o(AB,\s\up6(→))=a+2b,eq\o(BC,\s\up6(→))=-4a-b,eq\o(CD,\s\up6(→))=-5a-3b,则四边形ABCD的形状是().A.矩形B.平行四边形C.梯形D.以上都不对解析由已知eq\o(AD,\s\up6(→))=eq\o(AB,\s\up6(→))+eq\o(BC,\s\up6(→))+eq\o(CD,\s\up6(→))=-8a-2b=2(-4a-b)=2eq\o(BC,\s\up6(→)).∴eq\o(AD,\