预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共14页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号CN111111381A(43)申请公布日2020.05.08(21)申请号202010043611.X(22)申请日2020.01.15(71)申请人福州大学化肥催化剂国家工程研究中心地址350002福建省福州市工业路523号(72)发明人林立罗宇江莉龙陈崇启蔡国辉(74)专利代理机构北京三聚阳光知识产权代理有限公司11250代理人李亚南(51)Int.Cl.B01D53/047(2006.01)B01D53/22(2006.01)权利要求书1页说明书8页附图4页(54)发明名称吸附柱及氢氮分离系统(57)摘要本发明公开一种吸附柱,包括壳体,还包括:膜组件,设置于所述壳体内部,且其包括若干沿所述壳体的轴向间隔设置的膜分离单元;所述膜分离单元包括依次连通的引导段和膜分离段;吸附剂层,填充于相邻膜分离单元之间和膜分离单元与壳体内壁之间。本发明还公开了使用该吸附柱作的氢氮分离系统。本发明公开的吸附柱,将膜分离技术和变压吸附技术一体化,其系统结构紧凑,占地面积小,避免在两种方法连用时因为管道过多引起的气体损耗,成本低廉适合中小规模的气体制备工艺的后续气体提纯,同时兼顾最终得到的气体的收率和纯度,结构灵活,方便拆卸,泛用性强。本发明提供的氢氮分离系统,结构简单,耗能低,适用于氨气制氢的后续氢气提纯。CN111111381ACN111111381A权利要求书1/1页1.一种吸附柱,包括壳体,其特征在于,还包括:膜组件,设置于所述壳体内部,且其包括若干沿所述壳体的轴向间隔设置的膜分离单元;所述膜分离单元包括依次连通的引导段和膜分离段;吸附剂层,填充于相邻膜分离单元之间和膜分离单元与壳体内壁之间。2.根据权利要求1所述的吸附柱,其特征在于,所述引导段为引导管,所述膜分离段为中空膜纤维,所述中空膜纤维的一端与所述引导管连通。3.根据权利要求2所述的吸附柱,其特征在于,所述膜纤维的氢气渗透率为10-100barrer,氢氮选择性为5-100。4.根据权利要求3所述的吸附柱,其特征在于,所述壳体靠近所述引导段的端部设置进气口,所述进气口与引导段连通;所述壳体靠近所述膜分离段的端部设置用于将来自膜分离段的废气外排的废气出口,所述废气出口与膜分离段连通。5.根据权利要求4所述的吸附柱,其特征在于,还包括用于气体进入壳体内的第一开口和用于壳体内废气外排的第二开口,均设置于所述壳体的同一端部;还包括用于收集提纯后气体的第三开口及用于壳体内部吹扫及压力调整的第四开口,均设置于所述壳体的另一端部。6.根据权利要求5所述的吸附柱,其特征在于,所述第一开口与废气出口位于所述壳体的同一端部,所述第三开口与进气口位于所述壳体的同一端部。7.一种氢氮分离系统,其特征在于,包括权利要求1-6中任一权利要求所述的吸附柱。8.根据权利要求7所述的氢氮分离系统,其特征在于,所述吸附柱至少为两个,包括第一吸附柱和第二吸附柱;所述第一吸附柱和第二吸附柱上的第四开口彼此连通;还包括压缩机,其进气端分别与所述第一吸附柱和第二吸附柱上的第二开口连通,出气端分别与所述第一吸附柱和第二吸附柱上的进气口连通。9.根据权利要求8所述的氢氮分离系统,其特征在于,还包括供气装置、氢气收集装置和废气收集装置;所述供气装置分别与第一吸附柱和第二吸附柱上的第一开口连通,所述氢气收集装置分别与第一吸附柱和第二吸附柱上的第三开口连通,所述废气收集装置分别与第一吸附柱和第二吸附柱上的废气出口连通;或者,所述供气装置分别与第一吸附柱和第二吸附柱上的进气口连通,所述压缩机的进气端还与所述供气装置连通以对供气加压送入进气口中,所述氢气收集装置分别与第一吸附柱和第二吸附柱上的第三开口连通,所述废气收集装置分别与第一吸附柱和第二吸附柱上的废气出口连通。2CN111111381A说明书1/8页吸附柱及氢氮分离系统技术领域[0001]本发明涉及氢气制备技术领域,具体涉及一种吸附柱及氢氮分离系统。背景技术[0002]随着环保法规日趋严格,清洁氢能的生产和应用引起关注,氨分解制氢是其中重要途径之一。氨分解的产物为氢氮混合气,如何对其进行氢氮分离或提纯氢气,以满足各种设备对氢纯度的要求(例如ISO14687-2:2012规定车用燃料电池需要99.97%纯度的氢),是氨制氢过程中的一个重要环节。[0003]目前常用的气体分离技术有深冷法、变压吸附法(PSA)、膜分离法。其中深冷法主要用于大规模的气体分离,且压缩与冷却的能耗较高;变压吸附法经过几十年的发展,技术已较为成熟,选择合适的吸附剂层可使产物气纯度达99.99%以上,大型的PSA装置通过多次压力均衡可以实现90%的收率,但中小型PSA装置由于压力水平较低,只能实现较低收率(60%-70%);膜分离技术的