预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共53页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

1.3函数的基本性质观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:1.3.1单调性与最大(小)值请观察函数y=x2与y=x3图象,回答下列问题:3、分别指出图(1)、图(2)中,当x∈[0,+∞)和x∈(-∞,0)时,函数图象是上升的还是下降的?4、通过前面的讨论,你发现了什么?观察某城市一天24小时气温变化图.(t1,θ1)在[4,14]上,取几个不同的输入值,例如t1=5,t2=6,t3=8,t4=10,得到相对应的输出值θ1,θ2,θ3,θ4.在t1<t2<t3<t4时,有θ1<θ2<θ3<θ4,所以在[4,14]上,θ随t的增大而增大.问题:设函数y=f(x)的定义域为A,区间IA,在区间I上,y随x的增大而增大,该如何用数学符号语言来刻画呢?函数y=f(x)的定义域为A,区间IA,如果对于区间I内的任意两个值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数y=f(x)在区间I上是单调增函数,区间I称为函数y=f(x)的单调增区间.问题:如何定义单调减函数和单调减区间呢?函数y=f(x)的定义域为A,区间IA,如果对于区间I内的任意两个值x1,x2当x1<x2时,都有f(x1)>f(x2),那么就说函数y=f(x)在区间I上是单调减函数,区间I称为函数y=f(x)的单调减区间.1.函数y=f(x),x∈[0,3]的图象如图所示.2.对于二次函数f(x)=x2,因为-1,2∈(-∞,+∞),当-1<2时,f(-1)<f(2),所以函数f(x)=x2在区间(-∞,+∞)上是单调增函数.y如果函数y=f(x)在某个区间是增函数或减函数,那么就说函数y=f(x)在这个区间具有(严格的)单调性,这一区间叫做y=f(x)的单调区间.请问:在单调区间上增函数的图象是__________,减函数的图象是__________.(填“上升的”或“下降的”)1、增函数、减函数的三个特征:例1.下图是定义在闭区间[-5,5]上的函数y=f(x)的图象,根据图象说出y=f(x)的单调区间,以及在每个单调区间上,y=f(x)是增函数还是减函数?例2:物理学中的玻意耳定律(k为正常数)告诉我们,对于一定量的气体,当其体积V减小时,压强p将增大。试用函数的单调性证明之。例2、物理学中的玻意耳定律告诉我们,对于一定量的气体,当其体积V减小时,压强p将增大。试用函数的单调性证明之。例:证明函数f(x)=x3在R上是增函数.探究:画出反比例函数的图象。(1)这个函数的定义域I是什么?(2)它在定义域I上的单调性是怎样的?证明你的结论。证明:用定义证明函数的单调性的步骤:5、讨论函数f(x)=x+例3求函数f(x)=x+(k>0)在x>0上的单调性图象上有一个最低点(0,0),即对于任意的,都有画出下列函数的草图,并根据图象解答下列问题:2.最小值2、函数最大(小)值应该是所有函数值中最大(小)的,即对于任意的x∈I,都有f(x)≤M(f(x)≥M).例3、“菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点(大约是在距地面高度25m到30m处)时爆裂.如果在距地面高度18m的地方点火,并且烟花冲出的速度是14.7m/s.解:(1)设烟花在t秒时距地面的高度为hm,则由物体运动原理可知:h(t)=-4.9t2+14.7t+18例3.求函数在区间[2,6]上的最大值和最小值.因此,函数在区间[2,6]上的两个端点上分别取得最大值和最小值,即在点x=2时取最大值,最大值是2,在x=6时取最小值,最小值为0.4.(二)利用函数单调性判断函数的最大(小)值的方法课堂练习归纳小结证明:函数f(x)=1/x在(0,+∞)上是减函数。例题讲解:例2求f(x)=x2-ax+a在区间[-1,1]上的最值。例2求f(x)=x2-ax+a在区间[-1,1]上的最值。一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的,都有;(2)存在,使得那么,我们称M是函数y=f(x)的最大值(maximumvalue)。例1:“菊花”烟花是最壮观的烟花之一。制造时一般是期望在它达到最高点时爆裂.如果烟花距地面的高度hm与时间ts之间的关系为,那么烟花冲出后什么时候是它爆裂的最佳时刻?这时距地面的高度是多少(精确到1m)?分析:由函数的图象可知,函数在区间[2,6]上递减.所以,函数在区间[2,6]的两个端点上分别取得最大值和最小值。(一)创设情景,揭示课题.画出下列函数的图象,指出图象的最高点或最低点,并说明它能体现函数的什么特征?①②③④1.函数最大(小)值定义②函数最大(小)应该是所有函数值中最大(小)的,即对于任意的,都有.2.利用函数单调性来判断函数最大(小)值的方法.①配方法②换元法③数形结合法例2.