预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共79页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

《数学思想与数学文化》第六讲历史上的三次数学危机第六讲历史上的三次数学危机前言历史上,数学的发展有顺利也有曲折。大的挫折也可以叫做危机。危机也意味着挑战,危机的解决就意味着进步。所以,危机往往是数学发展的先导。数学发展史上有三次数学危机。每一次数学危机,都是数学的基本部分受到质疑。实际上,也恰恰是这三次危机,引发了数学上的三次思想解放,大大推动了数学科学的发展。一.第一次数学危机1.这一危机发生在公元前5世纪,危机来源于:当时认为所有的数都能表示为整数比,但突然发现不能表为整数比。第一次数学危机是由毕达哥拉斯学派内部提出的.2.危机的实质:是无理数,全体整数之比构成的是有理数系,有理数系需要扩充,需要添加无理数.☆当时古希腊的欧多克索斯部分地解决了这一危机。他采用了一个十分巧妙的关于“两个量之比”的新说法,回避了是无理数的实质,而是用几何的方法去处理不可公度比。这样做的结果,使几何的基础牢靠了,几何从全部数学中脱颖而出。欧几里得的《几何原本》中也采用了这一说法,以致在以后的近二千年中,几何变成了几乎是全部严密数学的基础。3.危机的解决但是彻底解决这一危机是在19世纪,依赖于数系的扩张。直到人类认识了实数系,这次危机才算彻底解决,这已经是两千多年以后的事情了。二.第二次数学危机1.危机的引发1)牛顿的“无穷小”牛顿的微积分是一项划时代的科学成就,蕴含着巨大的智慧和创新,但也有逻辑上的问题。我们来看一个例子。微积分的一个来源,是想求运动物体在某一时刻的瞬时速度。在牛顿之前,只能求一段时间内的平均速度,无法求某一时刻的瞬时速度。例如,设自由落体在时间下落的距离为,有公式,其中是固定的重力加速度。我们要求物体在的瞬时速度,先求。∴(*)当变成无穷小时,右端的也变成无穷小,因而上式右端就可以认为是,这就是物体在时的瞬时速度,它是两个无穷小之比。牛顿的这一方法很好用,解决了大量过去无法解决的科技问题。但是逻辑上不严格,遭到责难。2)贝克莱的发难英国的贝克莱大主教发表文章猛烈攻击牛顿的理论。贝克莱问道:“无穷小”作为一个量,究竟是不是0?如果是0,上式左端当成无穷小后分母为0,就没有意义了。如果不是0,上式右端的就不能任意去掉。贝克莱还讽刺挖苦说:即然和都变成“无穷小”了,而无穷小作为一个量,既不是0,又不是非0,那它一定是“量的鬼魂”了。这就是著名的“贝克莱悖论”。对牛顿微积分的这一责难并不是由数学家提出的,但是,贝克莱的质问是击中要害的3)实践是检验真理的唯一标准应当承认,贝克莱的责难是有道理的。“无穷小”的方法在概念上和逻辑上都缺乏基础。牛顿和当时的其他数学家并不能在逻辑上严格说清“无穷小”的方法。数学家们相信它,只是由于它使用起来方便有效,并且得出的结果总是对的。特别是像海王星的发现那样鼓舞人心的例子,显示出牛顿的理论和方法的巨大威力。所以,人们不大相信贝克莱的指责。这表明,在大多数人的脑海里,“实践是检验真理的唯一标准。”2.危机的实质第一次数学危机的实质是“不是有理数,而是无理数”。那么第二次数学危机的实质是什么?应该说,是极限的概念不清楚,极限的理论基础不牢固。也就是说,微积分理论缺乏逻辑基础。其实,在牛顿把瞬时速度说成“物体所走的无穷小距离与所用的无穷小时间之比”的时候,这种说法本身就是不明确的,是含糊的。当然,牛顿也曾在他的著作中说明,所谓“最终的比”,就是分子、分母要成为0还不是0时的比——例如(*)式中的gt,它不是“最终的量的比”,而是“比所趋近的极限”。他这里虽然提出和使用了“极限”这个词,但并没有明确说清这个词的意思。德国的莱布尼茨虽然也同时发明了微积分,但是也没有明确给出极限的定义。正因为如此,此后近二百年间的数学家,都不能满意地解释贝克莱提出的悖论。所以,由“无穷小”引发的第二次数学危机,实质上是缺少严密的极限概念和极限理论作为微积分学的基础。牛顿(英,1642-1727)3.危机的解决1)必要性微积分虽然在发展,但微积分的逻辑基础上存在的问题是那样明显,这毕竟是数学家的一块心病。而且,随着时间的推移,研究范围的扩大,类似的悖论日益增多。数学家在研究无穷级数的时候,做出许多错误的证明,并由此得到许多错误的结论。由于没有严格的极限理论作为基础。数学家们在有限与无限之间任意通行(不考虑无穷级数收敛的问题)。因此,进入19世纪时,一方面微积分取得的成就超出人们的预料,另一方面,大量的数学理论没有正确、牢固的逻辑基础,因此不能保证数学结论是正确无误的。历史要求为微积分学说奠基。2)严格的极限理论的建立到19世纪,一批杰出数学家辛勤、天才的工作,终于逐步建立了严格的极限理论,并把它作为微积分的基础。应该指出,严格的极限理论的建立是逐步的、漫长的。①在18世纪时,人们已经建立了极限理论,但那是初步的、粗糙的。②达朗贝尔在