一种基于多尺度残差网络的地震数据重建方法.pdf
努力****振宇
亲,该文档总共13页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
一种基于多尺度残差网络的地震数据重建方法.pdf
本发明公开了一种基于多尺度残差网络的地震数据重建方法。本发明将多尺度卷积思想应用于残差结构中,在多尺度残差块的基础上引入不同大小的卷积核,通过多尺度残差块级联自适应地提取地震数据的信息;然后利用各多尺度残差块输出作为局部特征进行全局特征融合。最后,将融合后的全局特征发送到重建模块进行地震数据重建。本发明在多尺度残差块的基础上采用不同尺度卷积核进行特征提取,能够更好的提取出地震数据的局部特征,从而重建出更高信噪比的地震数据。
基于多尺度残差收缩网络的多普勒雷达心跳检测方法.pdf
本发明为基于多尺度残差收缩网络的多普勒雷达心跳检测方法,考虑时域上的连续波雷达信号在不同时间尺度上表现不同,提出多尺度时域特征提取模块,并将其置于残差收缩网络结构中,构成多尺度残差收缩模块,残差收缩网络使用软阈值作为非线性转换层,可以有效地排除干扰心跳检测的相关噪声;对不同尺度下的雷达信号进行希尔伯特‑黄变换,得到的结果反映的是信号的时频特征,进一步对变换后的信号进行特征提取,有利于将心跳相关特征从复杂的混合信号中分离出来;对多尺度残差收缩模块输出以及希尔伯特‑黄滤波模块的输出进行特征融合,有效地减少了原
基于深度残差网络的多尺度超分辨率重建算法实现的开题报告.docx
基于深度残差网络的多尺度超分辨率重建算法实现的开题报告一、选题背景随着科技的快速发展,人们对于图像质量的要求越来越高,高清晰度、高保真度的图像已成为人们日常生活中必需品。但是,由于硬件限制或者采集问题等因素,很多场景中只能产生低分辨率的图像数据。因此,如何将低分辨率图像转化为高分辨率图像就成了一个非常有意义的研究课题。传统的图像超分辨率方法主要基于插值或者变换的形式对图像进行重建,但是这种方法可能会引起图像模糊、失真等质量问题,因此,经过近年来图像处理技术的发展,基于深度学习的超分辨率算法被广泛应用。这类
基于密集残差反向投影网络的多尺度超分辨率重建算法研究.docx
基于密集残差反向投影网络的多尺度超分辨率重建算法研究基于密集残差反向投影网络的多尺度超分辨率重建算法研究摘要:随着计算机技术的不断进步,超分辨率重建作为一种重要的图像处理技术引起了广泛的关注。本文提出了一种基于密集残差反向投影网络的多尺度超分辨率重建算法,该算法融合了深度学习和反向投影技术,能够在保持图像细节的同时提升图像的分辨率。实验证明,该算法在超分辨率重建任务中取得了显著的提升。关键词:超分辨率重建;密集残差反向投影网络;深度学习;图像处理1.引言随着计算机视觉技术的不断进步,人们对于高质量图像的需
基于多尺度残差网络和PPG信号的智能血压预测方法.pdf
本发明涉及无创血压预测技术领域,具体公开了一种基于多尺度残差网络和PPG信号的智能血压预测方法,包括:采集PPG信号;对PPG信号进行滤波;滤波后的PPG信号进行分割和贴上对应的血压标签;划分训练数据和测试数据;构建基于多尺度残差网络的血压预测模型;将训练集输入到血压预测网络模型中进行训练;将测试集输入到训练好的血压预测网络模型中,验证血压预测网络模型的有效性。本发明提供的基于多尺度残差网络和PPG信号的智能血压预测方法,能够从PPG信号中提取到更丰富的特征信息,随后采用3×1卷积核的卷积层加深网络,提高