

一种基于自监督对比学习的小样本遥感图像分类方法.pdf
春兰****89
亲,该文档总共12页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
一种基于自监督对比学习的小样本遥感图像分类方法.pdf
本发明涉及一种基于自监督对比学习的小样本遥感图像分类方法,包括以下步骤:1、对原始高光谱遥感数据进行降维、分割等预处理;2、在少量标记样本组成的训练集中,随机挑选标记样本并进行二次组合,生成对比学习组;3、设计并构建深度特征提取网络,利用对比组更新网络参数;4、利用训练好的深度网络模型对所有未标记样本进行预测,生成伪标记,并提出置信度差异算法挑选部分具有较高置信度的伪标记样本;5、微调网络模型并预测所有未标记样本的类别标签:将原始标记样本和伪标记样本结合,进一步训练模型并输出测试集样本的预测标签。本发明可
基于对比自监督学习的图像分类框架.pptx
汇报人:CONTENTS添加章节标题对比自监督学习概述定义和原理对比自监督学习的优势对比自监督学习的应用场景基于对比自监督学习的图像分类框架设计图像预处理数据增强特征提取分类器设计对比自监督学习算法的实现损失函数设计优化算法选择训练过程模型评估指标实验结果与分析实验数据集介绍实验设置与参数调整实验结果展示结果分析总结与展望基于对比自监督学习的图像分类框架的优缺点未来研究方向汇报人:
一种基于自监督学习的遥感图像船舶检测方法.pdf
本发明涉及图像识别技术领域,公开了一种基于自监督学习的遥感图像船舶检测方法,包括:(1)根据海面遥感图像中待检测船舶面积小且一张图可能存在多艘船舶的特点,设计了针对性的自监督学习模块,仅利用无标注海面遥感图像构建特征提取网络,实现海洋遥图像的高效特征提取;(2)改进MaskR?CNN的FPN网络,融合三种尺寸的特征图,结合自监督学习模块的特征提取器,在标注样本较少的情形下,显著提升了中小型船只的检测精度。
一种基于原型对比学习的半监督遥感图像检索方法及系统.pdf
本发明公开了一种基于原型对比学习的半监督遥感图像检索方法及系统,在不额外引入margin超参数的前提下,在学习过程中最大化类间方差同时最小化类内方差。接着,提出基于原型的无监督对比学习损失利用未标记数据优化半监督模型,将双分支改进为单分支,不依赖于数据增强构造正样本对,而是根据标记数据的原型为未标记数据分配伪标签,然后利用伪标签构建正负对来进行对比学习,从而充分挖掘未标记数据中隐藏的语义信息来增强模型的特征提取能力。最后,提出了多分支注意力模块,在不同尺度的图像信息上提取注意力权重,可以有效捕获遥感图像的
一种基于限制性原型对比网络的小样本遥感图像分类方法.pdf
本发明涉及一种基于限制性原型对比网络的小样本遥感图像分类方法,包括以下步骤:1、对原始高光谱遥感数据进行分割、数据增强等预处理;2、在源域和目标域随机选取样本构成对比支持集和查询集;3、设计并构建深度特征提取网络,利用对比支持集的类别原型与和查询集样本之间的距离更新网络参数;4、对类别原型施加三重限制以获得更加准确的原型用于网络的训练;5、微调网络模型并预测所有未标记样本的类别标签。本发明可以在少量标记样本的情况下,实现对高光谱遥感图像的准确分类,其分类效果明显优于一些现有算法。