趣味数学-七桥问题和四色问题.pdf
是飞****文章
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
趣味数学-七桥问题和四色问题.pdf
囊鍪鏊囊囊≤雾羹囊善鬻蘩蠹囊蒌蘩麓鐾誊瓣鬟孽萋舞妻囊萋攀囊爨橡
趣味数学七桥问题.pptx
18世纪,在(现俄罗斯)哥尼斯堡城风景秀美的普莱格尔河上有7座别致的拱桥,将河中的两个岛和河岸连结(如左图)。城中的居民经常沿河过桥散步。城中有位青年很聪明,爱思考,有一天,这位青年给大家提出了这样一个问题:能否一次走遍7座桥,而每座桥只许通过一次,最后仍回到起始地点。这就是数学史上著名的七桥问题。1836年,瑞士著名的数学家——欧拉,欧拉发现了这个问题的本质:这个问题与岛的形状和大小无关,与河岸的形状长短无关、与桥的形状、长短无关,重要的是桥、河岸、岛之间的位置关系。把两岸和小岛缩成一个点,桥当作连接这
趣味数学七桥问题.pptx
118世纪,在(现俄罗斯)哥尼斯堡城风景秀美的普莱格尔河上有7座别致的拱桥,将河中的两个岛和河岸连结(如左图)。城中的居民经常沿河过桥散步。城中有位青年很聪明,爱思考,有一天,这位青年给大家提出了这样一个问题:能否一次走遍7座桥,而每座桥只许通过一次,最后仍回到起始地点。这就是数学史上著名的七桥问题。1836年,瑞士著名的数学家——欧拉,欧拉发现了这个问题的本质:这个问题与岛的形状和大小无关,与河岸的形状长短无关、与桥的形状、长短无关,重要的是桥、河岸、岛之间的位置关系。把两岸和小岛缩成一个点,桥当作连接
趣味数学___数学活动_七桥问题.ppt
数学活动第一题18世纪在哥尼斯堡城(今俄罗斯加里宁格勒)的普莱格尔河上有7座桥,将河中的两个岛和河岸连结,如图所示。城中的居民经常沿河过桥散步,于是提出了一个问题:能否一次走遍7座桥,而每座桥只许通过一次,最后仍回到起始地点。这就是七桥问题,一个著名的图论问题。这个问题看起来似乎不难,但人们始终没有能找到答案,最后问题提到了大数学家欧拉那里。欧拉以深邃的洞察力很快证明了……(请同学们想)这样的走法不存在!于是“七桥问题”就等价于图3中所画图形的一笔画问题了。欧拉注意到,每个点如果有进去的边就必须有出来的边
趣味数学故事之关于“四色问题”的证明.doc
趣味数学故事之关于“四色问题”的证明趣味数学故事之关于“四色问题”的证明“四色问题”是世界数学史上一个非常著名的证明难题它要求证明在平面地图上只要用四种颜色就能使任何复杂形状的各块相邻区域之间颜色不会重复也就是说相互之间都有交界的区域最多只能有四块。一百五十多年来有许多数学家用了很长时间化了很多精力才能证明这个问题。前些日子报刊上曾有报道说:有好几位大学生用好几台电子计算机联合起来化了十几个小时才证明了这个问题。本人在二十多年前就知道有这么一个“四色问题”可一直找不到证明它的方法。现在我刚接