基于Transformer的双分支互补语义线检测方法.pdf
又珊****ck
亲,该文档总共18页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
基于Transformer的双分支互补语义线检测方法.pdf
语义线对于场景感知与场景理解等高级视觉任务具有重要意义。由于能够利用简单的线结构为图像场景赋予直观的视觉解释,语义线检测任务近年来受到了更多的关注。然而现有的语义线检测方法存在模型难以端到端优化、正负类别样本数量不平衡以及缺少全局建模导致线语义关联性低的问题。为解决上述问题,本发明以Transformer模型作为主体结构,设计并实现了基于Transformer的双分支互补语义线检测模型及互补检测方法。该方法的整体检测流程可分为三个阶段:(1)多尺度图像特征的提取与利用深度霍夫变换的空间变换(2)由粗粒度到
基于双Transformer分支的三维模型分类方法.pdf
基于双Transformer分支的三维模型分类方法,本发明涉及三维模型分类过程中,二维视图表征三维模型存在难以捕捉细节信息且分类准确率低下的问题。目前,基于视图的三维模型分类方法通常侧重于对视图采用不同的深度神经网络模型来挖掘视图间的区分性以及时序关系,这些方法都是视图级的,无法从多个视图中捕获局部细节信息,这些细微的和具有区分性的局部细节正是有效分类三维模型的关键。为此,本发明采用基于双Transformer分支的三维模型分类方法,该方法既可以有效获取三维模型的全局信息,又可以获取细粒度的局部信息,有效
一种基于双分支语义分割网络的道路要素检测方法及装置.pdf
本发明涉及一种基于双分支语义分割网络的道路要素检测方法及装置,本发明将车端采集的道路交通要素图像数据输入语义分割网络的两个分支中,进行特征提取;所述语义分割网络的两个分支分别为空间分支和语义分支;所述空间分支用于保留图像数据的浅层空间信息;所述语义分支用于提取图像数据的深层语义信息;然后将所述语义分割网络的两个分支的输出进行融合得到所述图像数据的特征图。本方案在细节分支上采用空洞卷积,增大了网络的感受野,在语义分支上,加入一种改进型的残差块,同时,优化损失函数,使得感知结果较之前的结构有明显增强。
一种基于Swin Transformer和CNN双分支耦合的图像配准方法.pdf
本发明公开了一种基于SwinTransformer和CNN双分支耦合的图像配准方法。该方法包括以下步骤:1、对原始数据中所有图像进行执行灰度值归一化、中心裁剪和重采样等标准的预处理步骤;2、将浮动图像和固定图像拼接后送入配准网络,并行经过SwinTransformer和CNN两个编码器分支;3、在SwinTransformer的每一个阶段,通过双分支特征耦合模块将SwinTransformer特征映射与对应分辨率的CNN特征映射进行特征交互与融合;4、解码器自适应调整来自编码器的深层特征与来自上层的特征,
一种基于Swin Transformer和CNN双分支耦合的图像配准方法.pdf
本发明公开了一种基于SwinTransformer和CNN双分支耦合的图像配准方法。该方法包括以下步骤:1、对原始数据中所有图像进行执行灰度值归一化、中心裁剪和重采样等标准的预处理步骤;2、将浮动图像和固定图像拼接后送入配准网络,并行经过SwinTransformer和CNN两个编码器分支;3、在SwinTransformer的每一个阶段,通过双分支特征耦合模块将SwinTransformer特征映射与对应分辨率的CNN特征映射进行特征交互与融合;4、解码器自适应调整来自编码器的深层特征与来自上层的特征,