预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共11页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

《完全平方和差公式》教学反思身为一名到岗不久的老师,我们要有很强的课堂教学能力,写教学反思可以很好的把我们的教学记录下来,教学反思应该怎么写才好呢?下面是小编为大家收集的《完全平方和差公式》教学反思,仅供参考,大家一起来看看吧。《完全平方和差公式》教学反思1本节课的重点有两个,一个是完全平方公式的运用,即对特殊数字的平方的.计算,另一个是添括号用以计算三个项的完全平方以及灵活运用两个公式进行计算,因为有了平方差公式做基础,学生对于数字的平方有所感觉,知道将数字拆分,而问题出得比较多的是添括号的处理,也就是如何将三项合并成三项。尤其是在将部分项移入到带有负号的括号的时候,经常忘记变号。所以在上课的时候对这个内容进行的专门的训练。通过训练,学生对变号的规则有了详尽的认识后,做起来比较轻松,但仍然有不少人犯错。于是我在想:添括号本来就是一个比较复杂的过程,既然复杂,干嘛不把复杂问题简单化?通过添括号完成后,直接利用结果分析得出:多项加减的完全平方则是将各项平方和再加上任意两项的积的两倍,这样学生得到结论更直接,更快速,学生的信心也更足。《完全平方和差公式》教学反思2完全平方和(差)公式是某些特殊形式的多项式相乘,只有掌握完全平方和(差)公式的一些本质地结构特点,才能正确地让公式更好地帮助我们进行简单计算。要学好这部分,首先要注意掌握:1、公式本身:(a+b)2=a2+2ab+b2文字叙述:两数和(或差)的平方,等于它们的平方和,加(或减)它们的积2倍。2、公式的结构特点:等号左边是一个二项式的平方,等号右边是一个二次三项式,其中有两项诗式左边二项式中每一项的平方,另一项是左边二项式中那两项乘积的2倍。或等号右边记作:首平方,尾平方,2倍之积中间放。3、公式中字母的广泛意义:既可以代表任意的数(正数、负数),又可以代表任意代数式。注意代表代数式时,要有“整体思想”的观念。其次要注意易错点:1、易错写:(a+b)2=a2+b2许多学生往往认为(a+b)2=a2+b2,甚至认为(a+b)3=a3+b3,(a+b)4=a4+b4,等等。为了说明这个问题,我首先利用分地的故事引入,第一个农夫分得a2+b2,第二个分得(a+b)2,然后让同学们对比2个代数式,通过各种方法说明这两者是不同的,比如计算法,代数字法,几何作图法(联系公式的几何意义),因而加深理解完全平方公式,并借此进行强化训练。虽然还有极个别学生出现2项的情况,但绝大部分明白了2倍之积中间放的意义。2、两个公式中的符号易混:课堂上进行了教学的改进,把2个公式(a+b)2与(a-b)2并作一个公式来处理。为了避免符号上出现混乱,把2个公式的符号特点进行观察,得出同号得正,异号得负的结论。由此应对两项式的平方的符号问题,也省去了一些变号的烦恼。3、两公式灵活运用在一些实际问题中,有些题目不能直接运用公式,需要一步转化才可以。如计算:(1)(y-x)(x-y)(2)(x+y)(-x-y)2、《乘法公式——平方差公式》教学反思本课的学习目的主要是熟练掌握整式的运算,并且这些知识是以后学习分式、根式运算以及函数等知识的基础,同时也是学习物理、化学等学科及其他科学技术不可或缺的数学工具。而本节是整式乘法中乘法公式的首要内容,学生只有熟练掌握了包括平方差公式在内的乘法公式及它的推导过程,才能实现本节乃至本章作为数学工具的重要作用。因此,在教学安排上,我选择从学生熟悉的求多边形面积入手,遵循从感性认识上升为理性思维的认知规律,得出抽象的概念,并在多项式乘法的基础上,再次推导公式,使原本枯燥的数学概念具有一定的实际意义和说理性;之后安排了一系列的例题和练习题,把新知运用到实战中去,解决简单的实际问题,这样既调动了学生学习的主动性,又锻炼了思维,整个过程由浅入深,在对所得结论不断观察、讨论、分析中,加深对概念的理解,增强学生应用知识解决问题的能力,从而达到较好的授课效果。数学是一门抽象的学科,但数学是来源于实际生活的。因此,数学教育的目的是将数学运用到实际生活中去,让学生深切感受到数学是有价值的科学,来源于生活,是其他科学的基础。本节公式中字母的含义对学生来讲很抽象,是本节的难点,也是学生运用公式解决实际问题的最大障碍,通过巩固练习,让学生逐步体会,为今后学习其他乘法公式做好准备。乘法公式的逆用就是因式分解的重要方法,因此,在本节补充练习中,已经开始渗透这部分知识,为后面学习因式分解做好铺垫。但是,我在教本章内容时却始终感到困惑。本以为这一章很简单,由于教材安排存在一定问题,如将同底数幂乘法、幂的乘方、积的乘方、单项式乘以单项式、单项式乘以多项式、多项式乘以多项式这么多的内容安排在一起,造成学生没掌握好、消化好,知识间相互混淆,设置了障碍。所以很多学生出现下列错误(3x?2)(3x?2)?3x象我们想