预览加载中,请您耐心等待几秒...
1/9
2/9
3/9
4/9
5/9
6/9
7/9
8/9
9/9

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

《完全平方和差公式》教学反思《完全平方和差公式》教学反思身为一名优秀的人民教师,课堂教学是重要的工作之一,在写教学反思的时候可以反思自己的教学失误,教学反思要怎么写呢?下面是小编精心整理的《完全平方和差公式》教学反思,仅供参考,大家一起来看看吧。《完全平方和差公式》教学反思1完全平方和(差)公式是某些特殊形式的多项式相乘,只有掌握完全平方和(差)公式的一些本质地结构特点,才能正确地让公式更好地帮助我们进行简单计算。要学好这部分,首先要注意掌握:1、公式本身:(a+b)2=a2+2ab+b2文字叙述:两数和(或差)的平方,等于它们的平方和,加(或减)它们的积2倍。2、公式的结构特点:等号左边是一个二项式的'平方,等号右边是一个二次三项式,其中有两项是公式左边二项式中每一项的平方,另一项是左边二项式中那两项乘积的2倍。或等号右边记作:首平方,尾平方,2倍之积中间放。3、公式中字母的广泛意义:既可以代表任意的数(正数、负数),又可以代表任意代数式。注意代表代数式时,要有“整体思想”的观念。其次要注意易错点:1、易错写:(a+b)2=a2+b2许多学生往往认为(a+b)2=a2+b2,甚至认为(a+b)3=a3+b3,(a+b)4=a4+b4,等等。为了说明这个问题,我首先利用分地的故事引入,第一个农夫分得a2+b2,第二个分得(a+b)2,然后让同学们对比2个代数式,通过各种方法说明这两者是不同的,比如计算法,代数字法,几何作图法(联系公式的几何意义),因而加深理解完全平方公式,并借此进行强化训练。虽然还有极个别学生出现2项的情况,但绝大部分明白了2倍之积中间放的意义。2、两个公式中的符号易混:课堂上进行了教学的改进,把2个公式(a+b)2与(a-b)2并作一个公式来处理。为了避免符号上出现混乱,把2个公式的符号特点进行观察,得出同号得正,异号得负的结论。由此应对两项式的平方的符号问题,也省去了一些变号的烦恼。3、两公式灵活运用在一些实际问题中,有些题目不能直接运用公式,需要一步转化才可以。如计算:(1)(y-x)(x-y)(2)(x+y)(-x-y)《完全平方和差公式》教学反思2学习了乘法公式中的完全平方,一个是两数和的平方,另一个是两数差的平方,两者仅一个“符号”不同。相乘的结果是两数的平方和,加上(或减去)两数的积的.2倍,两者也仅差一个“符号”不同,运用完全平方公式计算时,要注意:(1)切勿把此公式与平方差公式混淆,而随意写。(2)切勿把“乘积项”2ab中的2丢掉。(3)计算时,要先观察题目是否符合公式的条件。若不符合,应先变形为符合公式的条件的形式,再利用公式进行计算;若不能变为符合条件的形式,则应运用乘法法则进行计算。今后在教学中,要注意以下几点:1、让学生自编几道符合平方差公式结构的计算题,目的是辨认题目的结构特征。2、引入完全平方公式,让学生用文字概括公式的内容,培养抽象的数字思维能力。《完全平方和差公式》教学反思3小班化教学的理论已经学习交流了很长一段时间,大家都在自己的工作实践中进行尝试,也取得了一些效果。通过本次上公开课,对小班化教学又有了一点新的认识,反思如下。从思想上注重学生的主动参与。本节课我讲的内容是完全平方公式,在课堂上完成完全平方公式的推导应用,完全平方公式的面积表示。如果单纯从教学内容上看,用传统的`授课方式,很容易让学生记住公式会用公式。但是,如果注重学生的参与的话,在公式推导尤其是面积的表达上,放给学生自己,花费的时间很长。这样做虽然看起来教学效率偏低,但实际上在整个过程中,学生是全身心的投入进去了,自己是学习的主体,符合小班化教学的思想。本节课的主动参与还体现在公式的运用上,让学生出错,让学生尝试,让学生从错误中反思,从而学会正确的应用。这是本节课里,比较符合小班化理念的做法。本节课里自认为不是很理想的一些做法。比如教态比较严肃,有时显得比较急躁。还有,学生的学习效果不是特别理想,学习的效率有待于进一步提高。《完全平方和差公式》教学反思4公式法进行因式分解,除了逆用平方差公式之外,还有两个相对来说较难的公式逆用即完全平方和(或差)公式:(a+b)2=a2+2ab+b2。逆用完全平方公式进行因式分解关键同样是搞清完全平方公式的结构特点:等号左边是一个二项式的平方,等号右边是一个二次三项式,其中有两项是公式左边二项式中每一项的平方,另一项是左边二项式中那两项乘积的2倍。或等号右边记作:首平方,尾平方,2倍之积中间放。有了前边学习完全平方公式为基础,逆用完全平方公式进行因式分解只需要“颠倒使用”即可:等号右边作为“条件”,左边作为“结果”,但对学生来说,还是相当困难的。逆用完全平方公式进行因式分解的步骤可分三步:1、写成“首平方,尾平方,2倍之积中间放”的形式。2、按公式写出“两项和的`平方”的形