一种基于图卷积网络的扩展动作识别方法.pdf
是你****优呀
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
一种基于图卷积网络的扩展动作识别方法.pdf
一种基于图卷积网络的扩展动作识别方法。然而,传统GCN中的静态骨架图拓扑不反映非相邻关节的隐含关系,其中包含动作序列中骨架姿势的重要潜在信息。此外,传统的三分类节点划分策略丢弃了非物理连接边沿时间维度的大部分运动相关性。该方法提出了一个扩展的骨架图拓扑以及扩展的分区策略,以提取模型中的大部分非相邻关节的关系信息。扩展骨架图将关节表示为顶点,加权边分别表示物理连接和非物理连接关节之间的内在和外在关系。此外,扩展分区策略将GCN的输入图划分为五类固定长度张量,以包含最大运动相关性。最后,采用时空图卷积网络(S
一种基于分段图卷积网络的视频动作识别方法.pdf
本发明公开了一种基于分段图卷积网络的视频动作识别方法,包括以下步骤:A:获取每个视频段中的帧样本图像并进行图像增强;B:提取图像增强后的每个帧样本图像的外观特征和运动特征;C:构建基于每个视频段的特征关联图与时序一致性图及对应的关系连接矩阵;D:通过图卷积神经网络对输出特征进行增强得到输出特征;E:将输出特征与池化后的原始特征进行融合得到最终的时空特征;F:利用中期融合模型和后期融合模型进行动作,对分段识别的结果取平均值,得到待识别视频的动作识别结果。本发明能够提高视频动作的识别准确性。
基于卷积神经网络的舞蹈动作识别方法研究.docx
基于卷积神经网络的舞蹈动作识别方法研究随着科技的不断进步,人们对于机器学习技术的需求也越来越大。舞蹈动作识别是机器学习技术在体育领域的一项具有重要意义的应用。舞蹈动作识别是指通过智能化技术,将人的动作转化为数字信号,并通过计算机的算法,精确的对其进行分析和识别,从而实现对于舞蹈动作的自动化识别和跟踪。本文基于卷积神经网络,探讨了如何进行舞蹈动作识别并且对相关研究进行了综述。一、舞蹈动作的数据收集和处理在进行舞蹈动作识别之前,需要先收集相关的数据。为了获取准确的数据,在数据收集过程中需要注意以下几个方面:1
基于改进的深度卷积神经网络的人体动作识别方法.docx
基于改进的深度卷积神经网络的人体动作识别方法基于改进的深度卷积神经网络的人体动作识别方法摘要:随着计算机视觉和深度学习的发展,人体动作识别已成为一个重要的研究领域。在本论文中,我们提出了一种基于改进的深度卷积神经网络的人体动作识别方法。首先,我们介绍了传统的深度卷积神经网络在人体动作识别中的应用。然后,我们提出了一种改进的网络架构,通过引入注意力机制和跳跃连接来增强网络的表示能力。最后,我们使用公开数据集进行了广泛的实验验证,并对结果进行了详细的分析。实验结果表明,我们提出的方法在人体动作识别任务中取得了
基于多损失双流卷积神经网络的人体动作识别方法.pdf
本发明公开了基于多损失双流卷积神经网络的人体动作识别方法,它属于动作识别技术领域,解决了传统的双流网络动作细节信息丢失和无法提取时空特征的问题。本发明是对时序分割网络的改进,由多损失空间网络和时间网络构成,从体系结构角度来看,多损失双流卷积神经网络由三个分支构成:动作识别、动作复原和差异惩罚。动作复原加入了复原损失,保留动作细节信息和平衡提取的动作特征信息。差异惩罚利用外观特征计算动作特征进行分类,从而得到有效的时空特征。多损失双流卷积神经网络以端到端的方式训练学习,并利用动作识别损失、复原损失和差异损失