预览加载中,请您耐心等待几秒...
1/9
2/9
3/9
4/9
5/9
6/9
7/9
8/9
9/9

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号CN108168524A(43)申请公布日2018.06.15(21)申请号201711331546.5(22)申请日2017.12.13(71)申请人中国科学院长春光学精密机械与物理研究所地址130033吉林省长春市经济技术开发区东南湖大路3888号(72)发明人张立浩董吉洪薛闯孙宝龙安明鑫(74)专利代理机构深圳市科进知识产权代理事务所(普通合伙)44316代理人赵勍毅(51)Int.Cl.G01C15/00(2006.01)权利要求书1页说明书4页附图3页(54)发明名称光学遥感器的重力卸载装置(57)摘要本发明涉及一种光学遥感器的重力卸载装置。本发明中的重力卸载装置可实现九个支撑点的重力卸载,可实现地面成像测试,同时重力卸载装置不引入过约束,可保证测试结果的准确性。CN108168524ACN108168524A权利要求书1/1页1.一种光学遥感器的重力卸载装置,所述光学遥感器的主支撑结构包括:前基板,中基板,后基板和桁架杆组件,所述桁架杆组件连接所述前基板和所述中基板以及中基板和所述后基板,其特征在于:所述重力卸载装置包括:工装板、支撑板组件和支杆组件,所述支撑板组件包括第一支撑板、第二支撑板和第三支撑板,所述支杆组件至少包括九个支杆,至少两个所述支杆的上端与所述前基板通过球铰连接,至少三个所述支杆的上端与所述中基板通过球铰连接,至少四个所述支杆的上端与所述后基板通过球铰连接,所述第一支撑板、第二支撑板和第三支撑板分别至少与三个所述支杆的下端通过球铰连接,所述第一支撑板、第二支撑板和第三支撑板分别通过球铰与所述工装板连接。2.根据权利要求1所述的重力卸载装置,其特征在于:所述支杆组件包括九个支杆,两个所述支杆的上端与所述前基板通过球铰连接,三个所述支杆的上端与所述中基板通过球铰连接,四个所述支杆的上端与所述后基板通过球铰连接,所述第一支撑板、第二支撑板和第三支撑板分别与三个所述支杆的下端通过球铰连接。3.根据权利要求2所述的重力卸载装置,其特征在于:三个所述支杆的上端等间距的与所述中基板通过球铰连接。4.根据权利要求2所述的重力卸载装置,其特征在于:四个所述支杆的上端等间距的与所述后基板通过球铰连接。5.根据权利要求2所述的重力卸载装置,其特征在于:所述第一支撑板、第二支撑板和第三支撑板位于同一平面。6.根据权利要求5所述的重力卸载装置,其特征在于:所述第一支撑板、第二支撑板和第三支撑板的形状为三角形。7.根据权利要求6所述的重力卸载装置,其特征在于:三个所述支杆与所述第一支撑板的连接位置分别位于所述第一支撑板的三个角,所述第一支撑板与所述工装板之间设置的球铰的中心位置为三个所述支杆支撑载荷力矩平衡的中心点。8.根据权利要求6所述的重力卸载装置,其特征在于:三个所述支杆与所述第二支撑板的连接位置分别位于所述第二支撑板的三个角,所述第二支撑板与所述工装板之间设置的球铰的中心位置为三个所述支杆支撑载荷力矩平衡的中心点。9.根据权利要求6所述的重力卸载装置,其特征在于:三个所述支杆与所述第三支撑板的连接位置分别位于所述第三支撑板的三个角,所述第三支撑板与所述工装板之间设置的球铰的中心位置为三个所述支杆支撑载荷力矩平衡的中心点。2CN108168524A说明书1/4页光学遥感器的重力卸载装置技术领域[0001]本发明属于空间遥感技术领域,具体涉及一种空间光学遥感器的重力卸载装置。背景技术[0002]空间光学遥感器可满足空间天文观测、军民对地观测及地球科学等多个领域的科学及应用需求。随着空间光学遥感器的成像分辨率要求越来越高,光学遥感器的口径增大,焦距增长,整体尺寸显著增加。光学遥感器自身的重力对光学成像质量的影响变得尤为突出。光学遥感器采用反射式光学系统,主镜与次镜的距离增加,无法只通过支撑结构的高刚度设计来保证在地面重力环境下,主镜和次镜之间相对位移以及倾角的变化,进而无法保证在地面像质测试过程中整个系统的成像质量。[0003]现有技术中光学遥感器在地面像质测试中,均采用光轴水平状态,如图1所示。重力垂直于主镜2’、次镜3’、三镜1’所确定的平面。主镜2’与三镜1’安装在基板7’上,次镜3’安装在基板4’上,基板4’通过桁架杆6’、基板5’与基板7’相连,基板7’通过连接结构8’与平台9’相连。地面测试时,只固定基板7’进行测试。普通尺寸的光学遥感器,在传统测试状态下,重力对于主镜与次镜的相对位置变化只在微米量级,可满足地面成像需求。大尺寸的光学遥感器,如果只固定基板7’与平台9’连接点,由于次镜相对于主镜很远,导致次镜相对于约束状态悬臂过长,重力对于主镜与次镜相对位置的变化在亚毫米量级甚至是毫米量级,无法满足地面的成像需要。[0004]因此,现有技